Skip to main content
Log in

Graphene-based electromechanically tunable subwavelength mid-IR perfect absorber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, we propose and numerically investigate a graphene-based electromechanically tunable perfect absorber design. The fundamental motivation is to demonstrate the electromechanically tunable feature in graphene metasurface at the mid-infrared regime, which otherwise exploited only the chemical potential feature in the literature. The structure consists of a gold grating on a gold substrate separated by an oxide spacer with an overlay of monolayer graphene with free-standing segments. By applying external DC voltages, the free-standing region of the graphene layer deflects, owing to the electrostatic force it experiences. This shifts the resonance absorption wavelength. In the mid-infrared region of 5–10 µm, a very low actuation voltage of 1.6 V displaces the graphene membrane by 1 nm, resulting in a wide shift of 60 nm in resonance wavelength. A continuous tunability with near-perfect absorption over a wavelength range of 200 nm for an applied voltage of only 7 V is demonstrated. At a voltage greater than 7 V, a mode hopping phenomenon is observed, hampering the perfect absorber operations with a shift in wavelengths. It is shown that the perfect absorption is again retained at some higher voltage. Such implementations hold promising applications in nanophotonics sensors, detectors, real-time beam steering, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Available from the corresponding author upon reasonable request.

References

  • Bareza, N.J., Gopalan, K.K., Alani, R., Paulillo, B., Pruneri, V.: Mid-infrared gas sensing using graphene plasmons tuned by reversible chemical doping. ACS Photonics 7, 879–884 (2020)

    Google Scholar 

  • Cao, G.: Atomistic studies of mechanical properties of graphene. Polymers 6, 2404–2432 (2014)

    Google Scholar 

  • Chen, S., Liu, Z., Du, H., Tang, C., Ji, C.Y., Quan, B., Pan, R., Yang, L., Li, X., Gu, C., Zhang, X., Yao, Y., Li, J., Fang, N.X., Li, J.: Electromechanically reconfigurable optical nano-kirigami. Nat. Commun.Commun. 12, 1299 (2021)

    ADS  Google Scholar 

  • Deng, X.H., Liu, J.T., Yuan, J., Wang, T.B., Liu, N.H.: Tunable THz absorption in graphene-based heterostructures. Opt. Express 22, 30177–30183 (2014)

    ADS  Google Scholar 

  • Fang, Z., Wang, Y., Schlather, A.E., Liu, Z., Ajayan, P.M., de Abajo, F.J., Nordlander, P., Zhu, X., Halas, N.J.: Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014)

    ADS  Google Scholar 

  • García de Abajo, F.J.G.: Graphene plasmonics: challenges and opportunities. ACS Photonics 1, 135–152 (2014)

    Google Scholar 

  • Gopalan, K.K., Paulillo, B., Mackenzie, D.M.A., Rodrigo, D., Bareza, N., Whelan, P.R., Shivayogimath, A., Pruneri, V.: Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Lett. 18, 5913–5918 (2018)

    ADS  Google Scholar 

  • Grande, M., Vincenti, M.A., Stomeo, T., Bianco, G.V., de Ceglia, D., Aközbek, N., Petruzzelli, V., Bruno, G., De Vittorio, M., Scalora, M., D’Orazio, A.: Graphene-based perfect optical absorbers harnessing guided mode resonances. Opt. Express 23, 21032–21042 (2015)

    ADS  Google Scholar 

  • Hasan, D., Lee, C.: Hybrid metamaterial absorber platform for sensing of CO2 gas at mid‐IR. Adv. Sci. (Weinh) 5, 1700581 (2018)

    Google Scholar 

  • Horng, J., Chen, C.-F., Geng, B., Girit, C., Zhang, Y., Hao, Z., Bechtel, H.A., Martin, M., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011)

    ADS  Google Scholar 

  • Hu, J., Bandyopadhyay, S., Liu, Y., Shao, L.Y.: A review on metasurface: from principle to smart metadevices. Front. Phys. 8, 586087 (2021)

    Google Scholar 

  • Huang, H., Xia, H., Xie, W., Guo, Z., Li, H., Xie, D.: Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions. Sci. Rep. 8, 4183 (2018)

    ADS  Google Scholar 

  • Korkmaz, S., Turkmen, M., Aksu, S.: Mid-infrared narrow band plasmonic perfect absorber for vibrational spectroscopy. Sens. Actuators A 301, 111757 (2020)

    Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    ADS  Google Scholar 

  • Lee, I.H., Yoo, D., Avouris, P., Low, T., Oh, S.H.: Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol.Nanotechnol. 14, 313–319 (2019a)

    ADS  Google Scholar 

  • Lee, S., Heo, H., Kim, S.: High fabrication-tolerant narrowband perfect graphene absorber based on guided-mode resonance in distributed Bragg reflector. Sci. Rep. 9, 4294 (2019b)

    ADS  Google Scholar 

  • Li, W., Valentine, J.: Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014)

    ADS  Google Scholar 

  • Li, Z., Yu, N.: Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl. Phys. Lett. 102, 131108 (2013)

    ADS  Google Scholar 

  • Li, H., Wang, L., Zhai, X.: Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber. Sci. Rep. 6, 36651 (2016)

    ADS  Google Scholar 

  • Li, K., Fitzgerald, J.M., Xiao, X., Caldwell, J.D., Zhang, C., Maier, S.A., Li, X., Giannini, V.: Graphene plasmon cavities made with silicon carbide. ACS Omega 2, 3640–3646 (2017)

    Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010)

    ADS  Google Scholar 

  • Liu, C., Qi, L., Zhang, X.: Broadband graphene-based metamaterial absorbers. AIP Adv. 8, 015301 (2018)

    ADS  Google Scholar 

  • Luo, H., Cheng, Y.: Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure. Opt. Mater. 96, 109279 (2019)

    Google Scholar 

  • Nikitin, A.Y., Guinea, F., Garcia-Vidal, F.J., Martin-Moreno, L.: Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 85, 081405 (2012)

    ADS  Google Scholar 

  • Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

    Google Scholar 

  • Pors, A., Nielsen, M.G., Eriksen, R.L., Bozhevolnyi, S.I.: Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013)

    ADS  Google Scholar 

  • Principi, A., Asgari, R., Polini, M.: Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate. Solid State Commun.Commun. 151, 1627–1630 (2011)

    ADS  Google Scholar 

  • Raeis-Hosseini, N., Rho, J.: Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials (basel) 10, 1046 (2017)

    ADS  Google Scholar 

  • Roy, S., Debnath, K.: Finite-element method simulations of the tunable magnetic anapole state in an all-graphene metasurface: implications for near-field sensing, nanoscale optical trapping, and cloaking. ACS Appl. Nano Mater. 6, 2845–2853 (2023a)

    Google Scholar 

  • Roy, S., Debnath, K.: Electromechanically tunable graphene-based terahertz metasurface. Opt. Commun.Commun. 534, 129319 (2023b)

    Google Scholar 

  • Roy, S., Mondal, S., Debnath, K.: Graphene-based chiral metasurface for generation of tunable circular dichroism—design and sensor applications. IEEE Sens. J. 23, 285–292 (2022)

    ADS  Google Scholar 

  • Roy, S., Mondal, S., Debnath, K.: Symmetric bound states in the continuum in an all graphene metasurface—design and sensor applications. IEEE Sens. J. 23, 8352–8359 (2023b)

    ADS  Google Scholar 

  • Safaei, A., Chandra, S., Leuenberger, M.N., Chanda, D.: Wide angle dynamically tunable enhanced infrared absorption on large-area nanopatterned graphene. ACS Nano 13, 421–428 (2019)

    Google Scholar 

  • Salski, B.: An FDTD model of graphene intraband conductivity. IEEE Trans. Microw. Theor. Tech. 62, 1570–1578 (2014)

    ADS  Google Scholar 

  • Thareja, V., Kang, J.H., Yuan, H., Milaninia, K.M., Hwang, H.Y., Cui, Y., Kik, P.G., Brongersma, M.L.: Electrically tunable coherent optical absorption in graphene with ion gel. Nano Lett. 15, 1570–1576 (2015)

    ADS  Google Scholar 

  • Tian, J., Li, Q., Belov, P.A., Sinha, R.K., Qian, W., Qiu, M.: High-Q all-dielectric metasurface: super and suppressed optical absorption. ACS Photonics 7, 1436–1443 (2020)

    Google Scholar 

  • Tittl, A., Michel, A.K.U., Schäferling, M., Yin, X., Gholipour, B., Cui, L., Wuttig, M., Taubner, T., Neubrech, F., Giessen, H.: A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015)

    Google Scholar 

  • Tran, T.Q., Lee, S., Kim, S.: A graphene-assisted all-pass filter for a tunable terahertz transmissive modulator with near-perfect absorption. Sci. Rep. 9, 12558 (2019)

    ADS  Google Scholar 

  • Tripathi, A., John, J., Kruk, S., Zhang, Z., Nguyen, H.S., Berguiga, L., Romeo, P.R., Orobtchouk, R., Ramanathan, S., Kivshar, Y., Cueff, S.: Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials. ACS Photonics 8, 1206–1213 (2021)

    Google Scholar 

  • Wang, Y., Stellinga, D., Klemm, A.B., Reardon, C.P., Krauss, T.F.: Tunable optical filters based on silicon nitride high contrast gratings. IEEE J. Sel. Top. Quantum Electron. 21, 108–113 (2015)

    ADS  Google Scholar 

  • Wang, Q., Mao, D., Liu, P., Koschny, T., Soukoulis, C.M., Dong, L.: NEMS-based infrared metamaterial via tuning nanocantilevers within complementary split ring resonators. J. Microelectromech. Syst.Microelectromech. Syst. 26, 1371–1380 (2017)

    Google Scholar 

  • Wu, G., Jiao, X., Wang, Y., Zhao, Z., Wang, Y., Liu, J.: Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt. Express 29, 2703–2711 (2021)

    ADS  Google Scholar 

  • Yao, Y., Shankar, R., Kats, M.A., Song, Y., Kong, J., Loncar, M., Capasso, F.: Nano Lett. 14, 6526–6532 (2014)

    ADS  Google Scholar 

  • Yin, Y., Cheng, Z., Wang, L., Jin, K., Wang, W.: Graphene, a material for high temperature devices—intrinsic carrier density, carrier drift velocity and lattice energy. Sci. Rep. 4, 5758 (2014)

    ADS  Google Scholar 

  • Yoon, G., So, S., Kim, M., Mun, J., Ma, R., Rho, J.: Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Converg. 4, 36 (2017)

    Google Scholar 

  • Zhang, S., Zhou, K., Cheng, Q., Lu, L., Li, B., Song, J., Luo, Z.: Tunable narrowband shortwave-infrared absorber made of a nanodisk-based metasurface and a phase-change material Ge2Sb2Te5 layer. Appl. Opt. 59, 6309–6314 (2020)

    ADS  Google Scholar 

  • Zhao, J., Liu, X., Qiu, W., Ma, Y., Huang, Y., Wang, J.X., Qiang, K., Pan, J.Q.: Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity. Opt. Express 22, 5754–5761 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Indian Institute of Technology Kharagpur under the Institute Scheme for Innovative Research and Development (ISIRD). The authors also acknowledge Mr Souvik Mondal, Ph.D. student of the Department of E & EC, IIT Kharagpur, for developing the 3D graphical image of the device schematic.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed and approved the final version of the manuscript.

Corresponding author

Correspondence to Shuvajit Roy.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Ethical approval

This manuscript is the author’s original work, which has not been previously published elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Debnath, K. Graphene-based electromechanically tunable subwavelength mid-IR perfect absorber. Opt Quant Electron 55, 1246 (2023). https://doi.org/10.1007/s11082-023-05514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05514-0

Keywords

Navigation