Skip to main content
Log in

Entanglement, quantum coherence and quantum Fisher information of two qubit-field systems in the framework of photon-excited coherent states

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Based on coherent state theory, the photon-excited coherent states associated with pseudo-harmonic oscillators (PE-CSPHOs) are considered to investigate the interaction between a system of two qubits (two-level atoms) and a radiation field. By considering the dipole–dipole Hamiltonian and Ising Hamiltonian, we solve the Schrödinger equation to examine the influence of the qubit-qubit interaction (Q–QI) on the dynamics of the Q–Q entanglement and the entanglement between the two qubits and field. Furthermore, we study the dynamics of norm coherence and Fisher information, based on symmetric logarithmic derivative, with respect to the physical parameters of the system and explore the relation among the quantifiers during quantum dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abdel-Khalek, S.: Quantum Fisher information flow and entanglement in pair coherent states. Opt. Quant. Electron. 46, 1055–1064 (2014)

    Google Scholar 

  • Abdel-Khalek, S., Berrada, K., Obada, A.-S.F.: Quantum Fisher information for a single qubit system. Eur. Phys. J. D 66, 1–6 (2012)

    MATH  Google Scholar 

  • Abdel-Khalek, S., Berrada, K., Alkaoud, A.: Nonlocality and coherence in double quantum dot systems. Physica E 130, 114679 (2021)

    Google Scholar 

  • Abouelregal, A.E., Marin, M.: The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 12, 1276 (2020)

    ADS  Google Scholar 

  • Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)

    ADS  Google Scholar 

  • Agarwal, G.S., Tara, K.: Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. Phys. Rev. A 46, 485 (1992)

    ADS  Google Scholar 

  • Algarni, M., Berrada, K., Abdel-Khalek, S., Eleuch, H.: Coherence trapping in open two-qubit dynamics. Symmetry 13, 2445 (2021a)

    ADS  Google Scholar 

  • Algarni, M., Berrada, K., Abdel-Khalek, S., Eleuch, H.: Quantum coherence of atoms with dipole–dipole interaction and collective damping in the presence of an optical field. Symmetry 13, 2327 (2021b)

    ADS  Google Scholar 

  • Algarni, M., Berrada, K., Abdel-Khalek, S., Eleuch, H.: Parity deformed Tavis–Cummings model: entanglement, parameter estimation and statistical properties. Mathematics 10, 3051 (2022)

    Google Scholar 

  • Altowyan, A.S., Berrada, K., Abdel-Khalek, S., Eleuch, H.: Quantum coherence and total phase in semiconductor microcavities for multi-photon excitation. Nanomaterials 12, 2671 (2022)

    Google Scholar 

  • Amaro, J.G., Pineda, C.: Multipartite entanglement dynamics in a cavity. Phys. Scr. 90, 068019 (2014)

    ADS  Google Scholar 

  • Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  • Beckey, J.L., Gigena, N., Coles, P.J., Cerezo, M.: Computable and operationally meaningful multipartite entanglement measures. Phys. Rev. Lett. 127, 140501 (2021)

    MathSciNet  ADS  Google Scholar 

  • Bellini, M., Coelho, A.S., Filippov, S.N., Man’ko, V.I., Zavatta, A.: Towards higher precision and operational use of optical homodyne tomograms. Phys Rev A 85, 052129 (2012)

    ADS  Google Scholar 

  • Benabdallah, F., Rahman, A.U., Haddadi, S., Daoud, M.: Long-time protection of thermal correlations in a hybrid-spin system under random telegraph noise. Phys. Rev. E 106(3), 034122 (2022)

    ADS  Google Scholar 

  • Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  • Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    ADS  Google Scholar 

  • Berrada, K.: Quantum metrology with SU (1, 1) coherent states in the presence of nonlinear phase shifts. Phys. Rev. A 88, 013817 (2013)

    ADS  Google Scholar 

  • Berrada, K., Eleuch, H.: Noncommutative deformed cat states under decoherence. Phys. Rev. D 100, 016020 (2019)

    MathSciNet  ADS  Google Scholar 

  • Berrada, K., Abdel-Khalek, S., Ooi, C.H.R.: Quantum metrology with entangled spin-coherent states of two modes. Phys. Rev. A 86, 033823 (2012)

    ADS  Google Scholar 

  • Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    MathSciNet  MATH  ADS  Google Scholar 

  • Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82, 2207 (1999)

    ADS  Google Scholar 

  • Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    ADS  Google Scholar 

  • Cocchiarella, D., et al.: Entanglement distance for arbitrary m-qudit hybrid systems. Phys. Rev. A 101, 042129 (2020)

    MathSciNet  ADS  Google Scholar 

  • Cusati, T., Napoli, A., Messina, A.: Competition between inter-and intra-molecular energy exchanges in a simple quantum model of a dimer. J. Mol. Struct. (Thoechem) 769, 3–8 (2006)

    Google Scholar 

  • Dehghani, A., Mojaveri, B., Amiri, F.S.: Photon added coherent states of the parity deformed oscillator. Mod. Phys. Lett. A 34, 1950104 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  • Dodonov, V.V., Marchiolli, M.A., Korennoy, Y.A., Man’Ko, V.I., Moukhin, Y.A.: Dynamical squeezing of photon-added coherent states. Phys. Rev. A 58, 4087 (1998)

    ADS  Google Scholar 

  • Friis, N., Vitagliano, G., Malik, M., Huber, M.: Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019)

    Google Scholar 

  • Giovannetti, V., Mancini, S., Vitali, D., Tombesi, P.: Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A 67, 022320 (2003)

    ADS  Google Scholar 

  • Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    MathSciNet  ADS  Google Scholar 

  • Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    ADS  Google Scholar 

  • Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)

    MathSciNet  ADS  Google Scholar 

  • Gühne, O., Toth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    MathSciNet  ADS  Google Scholar 

  • Guo, J.-L., Song, H.-S.: Entanglement between two Tavis–Cummings atoms with phase decoherence. J. Mod. Opt. 56, 496–501 (2009)

    MATH  ADS  Google Scholar 

  • Hartmann, M.J., Brandao, G.S.L., Plenio, M.B.: Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501 (2007)

    ADS  Google Scholar 

  • Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  • Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  • Huber, S., Konig, R., Vershynina, A.: Geometric inequalities from phase space translations. J. Math. Phys. 58, 012206 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  • Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    ADS  Google Scholar 

  • Kim, J.S.: Entanglement of formation and monogamy of multi-party quantum entanglement. Sci. Rep. 11, 2364 (2021)

    ADS  Google Scholar 

  • Len, Y.L., Gefen, T., Retzker, A., Kołodyński, J.: Quantum metrology with imperfect measurements. Nat. Commun. 13, 6971 (2022)

    ADS  Google Scholar 

  • Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    MATH  ADS  Google Scholar 

  • Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    ADS  Google Scholar 

  • Liu, J., Jing, X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88, 042316 (2013)

    ADS  Google Scholar 

  • Liu, P., Wang, P., Yang, W., Jin, G.R., Sun, C.P.: Fisher information of a squeezed-state interferometer with a finite photon-number resolution. Phys. Rev. A 95, 023824 (2017)

    ADS  Google Scholar 

  • López, C.E., Lastra, F., Romero, G., Retamal, J.C.: Entanglement properties in the inhomogeneous Tavis–Cummings model. Phys. Rev. A 75, 022107 (2007)

    MathSciNet  ADS  Google Scholar 

  • Loudon, R., Knight, P.L.: Squeezed light. J. Mod. Opt. 34, 709–759 (1987)

    MathSciNet  MATH  ADS  Google Scholar 

  • Lucien, J.B.: Measurement of gravity at sea and in the air. Rev. Geophys. 5, 477–526 (1967)

    ADS  Google Scholar 

  • Monda, D., Datta, C., Sazim, S.: Quantum coherence sets the quantum speed limit for mixed states. Phys. Lett. A 380, 689–695 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  • Mortezapour, A., Naeimi, G., Franco, R.L.: Coherence and entanglement dynamics of vibrating qubits. Opt. Commun. 424, 26–31 (2018)

    ADS  Google Scholar 

  • Napoli, A., Messina, A., Cusati, T., Draganescu, G.: Quantum signatures in the dynamics of two dipole–dipole interacting soft dimers. Eur. Phys. J. B 50, 419–423 (2006)

    ADS  Google Scholar 

  • Nezami, S., Walter, M.: Multipartite entanglement in stabilizer tensor networks. Phys. Rev. Lett. 125, 241602 (2020)

    MathSciNet  ADS  Google Scholar 

  • Orszag, M., Hernandez, M.: Coherence and entanglement in a two-qubit system. Adv. Opt. Photonics 2, 229–286 (2010)

    ADS  Google Scholar 

  • Popov, D.: Photon-added Barut–Girardello coherent states of the pseudoharmonic oscillator. J. Phys. A Math. Gen. 35, 7205 (2002)

    MathSciNet  MATH  ADS  Google Scholar 

  • Popov, D., Pop, N., Sajfert, V.: Excitation on the coherent states of pseudoharmonic oscillator. AIP Conf. Proc. 1131, 61–66 (2009)

    ADS  Google Scholar 

  • Porras, D., Cirac, J.I.: Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)

    ADS  Google Scholar 

  • Rahman, A.U., Abd-Rabbou, M.Y., Haddadi, S., Ali, H.: Two-qubit steerability, nonlocality, and average steered coherence under classical dephasing channels. Ann. Phys. 535, 2200523 (2023)

    Google Scholar 

  • Rahman, A.U., Ali, H., Haddadi, S., Zangi, S.M.: Generating non-classical correlations in two-level atoms. Alex. Eng. J. 67, 425–436 (2023b)

    Google Scholar 

  • Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    MathSciNet  ADS  Google Scholar 

  • Safaeian, O., Tavassoly, M.K.: Deformed photon-added nonlinear coherent states and their non-classical properties. J Phys A 44, 225301 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  • Schrödinger, E.: Der stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschaften 14, 664–666 (1926)

    MATH  ADS  Google Scholar 

  • Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    ADS  Google Scholar 

  • Sixderniers, J.-M., Penson, K.A.: On the completeness of photon-added coherent states. J. Phys. A Math. Gen. 34, 2859 (2001)

    MathSciNet  MATH  ADS  Google Scholar 

  • Sorensen, A., Molmer, K.: Spin-spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274 (1999)

    ADS  Google Scholar 

  • Sperling, J., Walmsley, I.A.: Entanglement in macroscopic systems. Phys. Rev. A 95, 062116 (2017)

    ADS  Google Scholar 

  • Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    MathSciNet  ADS  Google Scholar 

  • Tessier, T.E., Deutsch, I.H., Delgado, A., Fuentes-Guridi, I.: Entanglement sharing in the two-atom Tavis–Cummings model. Phys. Rev. A 68, 062316 (2003)

    ADS  Google Scholar 

  • Torres, J.M., Sadurni, E., Seligman, T.H.: Two interacting atoms in a cavity: exact solutions, entanglement and decoherence. J. Phys. A Math. Theor. 43, 192002 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  • Torres, J.M., Bernad, J.Z., Alber, G.: Unambiguous atomic Bell measurement assisted by multiphoton states. Appl. Phys. B 122, 1–11 (2016)

    Google Scholar 

  • Tóth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012)

    ADS  Google Scholar 

  • Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    MathSciNet  MATH  ADS  Google Scholar 

  • Walls, D.F.: Squeezed states of light. Nature 306, 141–146 (1983)

    ADS  Google Scholar 

  • Walls, D.F., Millburn, G.J.: Quantum Optics. Springer, New York (2010)

    Google Scholar 

  • Wang, T.L., Wu, L.N., Yang, W.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)

    MathSciNet  ADS  Google Scholar 

  • Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    ADS  Google Scholar 

  • Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    MATH  ADS  Google Scholar 

  • Wootters, W.K.: Entanglement of formation and concurrence. Quantum. Inf. Comput. 1, 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  • Yao, Y., Xiao, X., Ge, L., Wang, X., Sun, C.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)

    ADS  Google Scholar 

  • Yuan, X., Zhou, H.Y., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    ADS  Google Scholar 

  • Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    ADS  Google Scholar 

Download references

Funding

The authors acknowledge to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R225), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

SA-K: Conceptualization, methodology, writing—original draft, writing—reviewing and editing. MA: Visualization, supervision, project administration, reviewing and editing. KB: Writing—original draft, writing—reviewing and editing. MM: Validation, investigation, reviewing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to S. Abdel-Khalek.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Acting the Hamiltonian operator \({\hat{\mathbf{H}}}\) Eq. (5) on the wave function \(\left| {{{\varvec{\uppsi}}}\left( {\mathbf{t}} \right)} \right\rangle\) and applying the Schrödinger equation,

$${\mathbf{i}}\hbar \frac{{\partial \left| {{{\varvec{\uppsi}}}\left( {\mathbf{t}} \right)} \right\rangle }}{{\partial {\mathbf{t}}}} = {\hat{\mathbf{H}}}\left| {{{\varvec{\uppsi}}}\left( {\mathbf{t}} \right)} \right\rangle ,$$
(17)

hence this allows us to determine \({\mathbf{Y}}_{{\mathbf{j}}} \left( {{\mathbf{n}}, {\mathbf{t}}} \right),\) \({\mathbf{for}}\; \hbar = 1,\) that are verifying the system of coupled ode

$$\frac{{{\mathbf{dY}}_{1} }}{{{\mathbf{dt}}}} = - {\mathbf{i}}{\varvec{\lambda}}_{{\varvec{N}}} {\mathbf{Y}}_{{\mathbf{1}}} - {\mathbf{ib}}\sqrt {{\mathbf{n}} + {\mathbf{m}} + 1} \left( {{\mathbf{Y}}_{{\mathbf{2}}} + {\mathbf{Y}}_{{\mathbf{3}}} } \right)$$
(18)
$$\frac{{{\mathbf{dY}}_{{\mathbf{2}}} }}{{{\mathbf{dt}}}} = - {\mathbf{i}}\left( {{\varvec{\lambda}}_{{\varvec{N}}} {\mathbf{Y}}_{{\mathbf{2}}} + {\varvec{\lambda}}_{{\varvec{D}}} {\mathbf{Y}}_{{\mathbf{3}}} } \right) - {\mathbf{ib}}\left[ {\sqrt {{\mathbf{n}} + {\mathbf{m}} + {\mathbf{1}}} {\mathbf{Y}}_{{\mathbf{1}}} + \sqrt {{\mathbf{n}} + {\mathbf{m}} + {\mathbf{2}}} {\mathbf{Y}}_{{\mathbf{4}}} } \right]$$
(19)
$$\frac{{{\mathbf{dY}}_{{\mathbf{3}}} }}{{{\mathbf{dt}}}} = - {\mathbf{i}}\left( {{\varvec{\lambda}}_{{\varvec{N}}} {\mathbf{Y}}_{{\mathbf{3}}} + {\varvec{\lambda}}_{{\varvec{D}}} {\mathbf{Y}}_{{\mathbf{2}}} } \right) - {\mathbf{ib}}\left[ {\sqrt {{\mathbf{n}} + {\mathbf{m}} + {\mathbf{1}}} {\mathbf{Y}}_{{\mathbf{1}}} + \sqrt {{\mathbf{n}} + {\mathbf{m}} + {\mathbf{2}}} {\mathbf{Y}}_{{\mathbf{4}}} } \right]$$
(20)
$$\frac{{{\mathbf{dY}}_{{\mathbf{4}}} }}{{{\mathbf{dt}}}} = - {\mathbf{i}}{\varvec{\lambda}}_{{\varvec{N}}} {\mathbf{Y}}_{{\mathbf{4}}} - {\mathbf{i}}{\varvec{b}}\sqrt {{\mathbf{n}} + {\mathbf{m}} + {\mathbf{2}}} \left( {{\mathbf{Y}}_{{\mathbf{2}}} + {\mathbf{Y}}_{{\mathbf{3}}} } \right).$$
(21)

The above coupled system (18)–(21) is solved numerically under the initial conditions

$${\text{Y}}_{1} \left( 0 \right) = {\text{Y}}_{4} \left( 0 \right) = 0$$
(22)
$${\text{Y}}_{2} \left( 0 \right) = {\text{Y}}_{3} \left( 0 \right) = \frac{{{\text{U}}_{{\text{n}}} }}{{\sqrt {2\mathop \sum \nolimits_{{{\text{n}} = 0}}^{\infty } \left| {{\text{U}}_{{\text{n}}} } \right|^{2} } }}$$
(23)

where \({\text{U}}_{{\text{n}}}\) is given in Eq. (8).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Khalek, S., Algarni, M., Marin, M. et al. Entanglement, quantum coherence and quantum Fisher information of two qubit-field systems in the framework of photon-excited coherent states. Opt Quant Electron 55, 1288 (2023). https://doi.org/10.1007/s11082-023-05504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05504-2

Keywords

Navigation