Skip to main content
Log in

Theoretical analysis of earth-abundant solar cell based on green absorber CuFeO2

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Huge advancements in the understanding of photovoltaic (PV) physics have been made, but still, PV has not overtaken conventional energy sources due to PV materials cost, toxicity, and stability concerns. In the pursuit of discovering a new solar energy harvester which satisfies criteria such as low cost, earth-abundance, non-toxicity, high efficiency and long-term stability, extensive research has been conducted on the potential of copper iron oxide (CuFeO2), also known as delafossite oxide. CuFeO2 possesses optimal bandgap (1.5 eV), with a high absorption coefficient and carrier mobility, suitable for potentially cost-effective solar cells. Theoretical modelling based on the optical and electrical characteristics of the CuFeO2 system is performed here on delafossite CuFeO2 to examine its photovoltaic performance. We explored various buffer counterparts for CuFeO2 absorber, and a stack of pn+n++ is simulated for device optimization. ZnO showed zero conduction band offset with CuFeO2 and a corresponding efficiency of 28% for CuFeO2/ZnO/ITO (pn+n++) device. The optimal range of crucial design parameters, such as doping profile, absorber thickness, surface recombination velocity, back contact work function, resistances, and bulk defects, that allow CuFeO2 solar cells to reach power conversion efficiencies above 25% are quantified. The spectrum loss (thermalization and non-absorption loss) stands at 59.6%, extrinsic recombination loss at 12.3%, and the performance ceiling of CuFeO2 at 28.1%. Theoretical analysis shows that the maximum achievable efficiency of 28% is close to the Shockley–Queisser (S–Q) limit and comparable to contemporary inorganic solar cells. The findings presented in this study are anticipated to stimulate experimentalists to fabricate stable, high-efficiency CuFeO2-based thin film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data from the simulation can be assessed upon request to the authors.

References

  • Akin, S., Sadegh, F., Turan, S., Sonmezoglu, S.: Inorganic CuFeO2 delafossite nanoparticles as effective hole transport material for highly efficient and long-term stable perovskite solar cells. ACS Appl. Mater. Interfaces 11(48), 45142–45149 (2019)

    Google Scholar 

  • Alkallas, F.H., Ben Gouider Trabelsi, A., Alrebdi, T.A., Ahmed, A.M., Rabia, M.: Development of a highly efficient optoelectronic device based on CuFeO2/CuO/Cu composite nanomaterials. Materials 15, 6857 (2022)

    ADS  Google Scholar 

  • Almora, O., Baran, D., Bazan, G.C., Berger, C., Cabrera, C.I., Catchpole, K.R., Erten-Ela, S., Guo, F., Hauch, J., Ho-Baillie, A.W.Y., Jesper-Jacobsson, T., Janssen, R.A.J., Kirchartz, T., Kopidakis, N., Li, Y., Loi, M.A., Lunt, R.R., Mathew, X., McGehee, M.D., Min, J., Mitzi, D.B., Nazeeruddin, M.K., Nelson, J., Nogueira, A.F., Paetzold, U.W., Park, N.G., Rand, B.P., Rau, U., Snaith, H.J., Unger, E., Vaillant-Roca, L., Yip, H.L., Brabec, C.J.: device performance of emerging photovoltaic materials (Version 2). Adv. Energy Mater. 11, 2102526 (2021)

    Google Scholar 

  • Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000)

    Google Scholar 

  • Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K., Nuthammachot, N., Chowdhury, T., Suklueng, M.: Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys. 16, 102839 (2020)

    Google Scholar 

  • Crespo, C.T.: Potentiality of CuFeO2-delafossite as a solar energy converter. Sol. Energy 163, 162–166 (2018)

    ADS  Google Scholar 

  • Dandogbessi, B.S., Akin-Ojo, O.: First-principles prediction of the electronic structure and carrier mobilities of biaxially strained molybdenum trioxide (MoO3). J. Appl. Phys. 120(5), 055105 (2016)

    Article  ADS  Google Scholar 

  • Deng, Q., Shi, L., Lu, K., Wang, G., Di, T., Shen, Y., Wang, S.: Construction of Ca-CuFeO2/TiO2(B) p–n heterojunctions with efficient visible light-driven photocatalysis. The Journal of Physical Chemistry C 127(9), 4704–4713 (2023). https://doi.org/10.1021/acs.jpcc.2c08064

    Google Scholar 

  • Egbo, K.O., Shil, S.K., Kwok, C.G., Wang, Y., Liu, C.P., Yu, K.M.: Band alignment of wide bandgap NiO/MoO3 and NiO/WO3 p-n heterojunctions studied by high-resolution X-ray photoelectron spectroscopy. J. Alloy. Compd. 876, 160136 (2021)

    Google Scholar 

  • Elumalai, N.K., Vijila, C., Jose, R., et al.: Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Mater. Renew. Sustain. Energy 4, 11 (2015). https://doi.org/10.1007/s40243-015-0054-9

    Google Scholar 

  • Ferri, M., Elliott, J., Fabris, S., Piccinin, S.: Establishing best practices to model the electronic structure of CuFeO2 from first principles. Phys. Rev. B 101, 155201 (2020)

    ADS  Google Scholar 

  • Forslund, A.: Synthesis and characterization of delafossite CuFeO2 for solar energy applications, PhD thesis, Uppsala Universitet (2016)

  • Fugate, E.A., Biswas, S., Clement, M.C., Kim, M., Kim, D., Asthagiri, A., Baker, L.R.: The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes. Nano Res. 12, 2390–2399 (2019)

    Google Scholar 

  • Gomathi, S., Sivapriya, J., Kalaiyarasi, M., Sivakumar, J., Jaanaa Rubavathy, S., Kumar, A.: Analyzing the performance ceiling of RbSnGeI3 -based lead-free stable perovskite solar cell. Opt. Quant. Electron. 55, 734 (2023a)

    Google Scholar 

  • Gomathi, S., Raj, A.G., Mishra, C.S., Kumar, A.: Straddling type sandwiched absorber based solar cell structure. Optik 272, 170354 (2023b)

    ADS  Google Scholar 

  • Gonzaga, I.L.E., Mercado, C.C.: Copper ternary oxides as photocathodes for solar-driven CO2 reduction. Rev. Adv. Mater. Sci. 61(1), 430–457 (2022)

    Google Scholar 

  • Gottesman, R., Levine, I., Schleuning, M., Irani, R., Abou-Ras, D., Dittrich, T., Friedrich, D., van de Krol, R.: Overcoming phase-purity challenges in complex metal oxide photoelectrodes: a case study of CuBi2O4. Adv. Energy Mater. 11, 2003474 (2021)

    Google Scholar 

  • Green, M.A., Dunlop, E.D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hao, X.: Solar cell efficiency tables (version 62). Prog. Photovolt. Res. Appl. 31(7), 651–663 (2023)

    Google Scholar 

  • Hemalatha, S., Prabu, R.T., Radhika, R., Kumar, A.: Dual-absorber thin-film solar cell: a high-efficiency design. Phys. Status Solidi A 220, 2200761 (2023)

    ADS  Google Scholar 

  • Jiang, C.M., Reyes-Lillo, S.E., Liang, Y., Liu, Y.S., Liu, G., Toma, F.M., Prendergast, D., Sharp, I.D., Cooper, J.K.: Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes. Chem. Mater. 31(7), 2524–2534 (2019a)

    Google Scholar 

  • Jiang, T., Zhao, Y., Xue, H.: Boosting the performance of delafossite photocathode through constructing a CuFeO2/CuO heterojunction for photoelectrochemical water reduction. J. Mater. Sci. 54, 11951–11958 (2019b)

    ADS  Google Scholar 

  • Jin, Y., Chumanov, G.: Solution synthesis of pure 2H CuFeO2 at low temperatures. RSC Adv. 6, 26392–26397 (2016)

    ADS  Google Scholar 

  • Kang, M., Jung, J., Lee, S.Y., Ryu, J.W., Kim, S.W.: Conductivity, carrier density, mobility, seebeck coefficient, and power factor in V2O5. Thermochim. Acta 576, 71–74 (2014)

    Google Scholar 

  • Kar, M., Sarkar, R., Pal, S., Sarkar, P.: Lead-free two-dimensional mixed tin and germanium halide perovskites for photovoltaic applications. J. Phys. Chem. C 125, 74–81 (2021)

    Google Scholar 

  • Karmakar, K., Sarkar, A., Mandal, K., Khan, G.G.: Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation. Nanotechnology 28, 325401 (2017)

    Google Scholar 

  • Klenk, R.: Characterisation and modelling of chalcopyrite solar cells. Thin Solid Films 387, 135–140 (2001)

    ADS  Google Scholar 

  • Kumar, A., Ajay, D.: Thakur Role of contact work function, back surface field, and conduction band offset in Cu2ZnSnS4 solar cell. Jpn. J. Appl. Phys. 57, 08RC05 (2018)

    Google Scholar 

  • Kumar, A., Ranjan, P.: Defects signature in VOC characterization of thin-film solar cells. Sol. Energy 220, 35–42 (2021)

    ADS  Google Scholar 

  • Kumar, A., Thakur, A.D.: Design issues for optimum solar cell configuration. AIP Conf. Proc. 1, 050022 (1953)

    Google Scholar 

  • Kumar, A., Thakur, A.D.: Comprehensive loss modeling in Cu2ZnSnS4 solar cells. Curr. Appl. Phys. 19, 1111–1119 (2019)

    ADS  Google Scholar 

  • Kumar, A., Singh, N.P., Sundaramoorthy, A.: Comparative device performance of CZTS solar cell with alternative back contact. Mater. Lett. X 12, 100092 (2021)

    Google Scholar 

  • Kumar, A., Prabu, R.T., Das, A.: Configuration analysis of SnS-based solar cells for high-efficiency devices. Opt. Quant. Electron. 54, 521 (2022)

    Google Scholar 

  • Lee, D., Park, J.W., Cho, N.K., et al.: Verification of charge transfer in metal-insulator-oxide semiconductor diodes via defect engineering of insulator. Sci. Rep. 9, 10323 (2019)

    ADS  Google Scholar 

  • Li, R.P., Shan, B.F., Zhao, Z.Y.: Delafossite CuFeO2 nanosheets with highly exposed 001 crystal facets for enhancing charge separation efficiency. Appl. Surf. Sci. 618, 156594 (2023)

    Google Scholar 

  • Liu, X., Zheng, H., Zhang, J., Xiao, Y., Wang, Z.: Photoelectric properties and charge dynamics for a set of solid-state solar cells with Cu4Bi4S9 as the absorber layer. J. Mater. Chem. a. 1, 10703–10712 (2013)

    Google Scholar 

  • Liu, Q.L., Zhao, Z.Y., Zhao, R.D., Yi, J.H.: Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion. J. Alloy. Compd. 819, 153032 (2020a)

    Google Scholar 

  • Liu, Q.L., Zhao, Z.Y., Yi, J.H.: Excess oxygen in delafossite CuFeO2+δ: Synthesis, characterization, and applications in solar energy conversion. Chem. Eng. J. 396, 125290 (2020b)

    Google Scholar 

  • Livingston, L.M.M., Raj, A.G.S., Prabu, R.T., et al.: Computational analysis of FeS2 material for solar cell application. Opt. Quant. Electron. 55, 244 (2023)

    Google Scholar 

  • Medhi, R., Li, C.H., Lee, S.H., Marquez, M.D., Jacobson, A.J., Lee, T.C., Lee, T.R.: Uniformly spherical and monodisperse antimony- and zinc-doped tin oxide nanoparticles for optical and electronic applications. ACS Appl. Nano Mater. 2(10), 6554–6564 (2019)

    Google Scholar 

  • Minemoto, T., Murata, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015)

    Google Scholar 

  • Pan, J., Gloeckler, M., Sites, J.R.: Hole current impedance and electron current enhancement by back-contact barriers in CdTe thin film solar cells. J. Appl. Phys. 100, 124505 (2006)

    ADS  Google Scholar 

  • Prabu, R.T., Malathi, S.R., Kumar, A., Al-Asbahi, B.A., Laref, A.: Bandgap assessment of compositional variation for uncovering high-efficiency improved stable all-inorganic lead-free perovskite solar cells. Phys. Status Solidi A 220, 2200791 (2023)

    ADS  Google Scholar 

  • Prévot, M.S., Guijarro, N., Sivula, K.: Enhancing the performance of a robust sol–gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. Chemsuschem 8, 1359–1367 (2015)

    Google Scholar 

  • Prévot, M.S., Jeanbourquin, X.A., Bourée, W.S., Abdi, F., Friedrich, D., van de Krol, R., Guijarro, N., Le Formal, F., Sivula, K.: Evaluating charge carrier transport and surface states in CuFeO2 photocathodes. Chem. Mater. 29(11), 4952–4962 (2017)

    Google Scholar 

  • Reddy, Y.K., Manjunath, V., Bimli, S., Devan, R.S.: Futuristic kusachiite solar cells of CuBi2O4 absorber and metal sulfide buffer Layers: theoretical efficiency approaching 28 %. Sol. Energy 244, 75–83 (2022)

    ADS  Google Scholar 

  • Ryu, J.H., You, Y.G., Kim, S.W., Hong, J.H., Na, J.H., Jhang, S.H.: Effect of Al2O3 deposition on carrier mobility and ambient stability of few-layer MoS2 field effect transistors. Curr. Appl. Phys. 20(2), 363–365 (2020)

    ADS  Google Scholar 

  • Scanlon, D., Dunnill, C., Buckeridge, J., et al.: Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013)

    ADS  Google Scholar 

  • Shaili, H., Salmani, E., Beraich, M., Elhat, A., Rouchdi, M., Taibi, M., Ez-Zahraouy, H., Hassanain, N., Mzerd, A.: Revealing the impact of strontium doping on the optical, electronic and electrical properties of nanostructured 2H-CuFeO2 delafossite thin films. RSC Adv. 11, 25686 (2021)

    ADS  Google Scholar 

  • Shi, J., Zhang, J., Yang, L., Qu, M., Qi, D.C., Zhang, K.H.: Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Adv. Mater. 33, 2006230 (2021). https://doi.org/10.1002/adma.202006230

    Google Scholar 

  • Singh, G., Kaur, T.P., Tangra, A.K.: Novel KFeO2 nanoparticles for dye-sensitized solar cell. Mater. Res. Express 6, 1150f5 (2019)

    Google Scholar 

  • Singh, A.P., Wang, R.B., Tossi, C., Tittonen, I., Wickman, B., Hellman, A.: Hydrogen induced interface engineering in Fe2O3–TiO2 heterostructures for efficient charge separation for solar-driven water oxidation in photoelectrochemical cells. RSC Adv. 11, 4297–4307 (2021)

    ADS  Google Scholar 

  • Son, M.-K.: Effect of deposition parameters on morphological and compositional characteristics of electrodeposited CuFeO2 film. Coatings 12(12), 1820 (2022a). https://doi.org/10.3390/coatings12121820

    Google Scholar 

  • Son, M.-K.: Effect of deposition parameters on morphological and compositional characteristics of electrodeposited CuFeO2 Film. Coatings 12, 1820 (2022b). https://doi.org/10.3390/coatings12121820

    Google Scholar 

  • Song, J.D., Wu, J.C., Rao, X., Li, S.J., Zhao, Z.Y., Liu, X.G., Zhao, X., Sun, X.F.: Single crystal growth of CuFe1−xGaxO2 by the optical floating-zone method. J. Cryst. Growth 446, 79–84 (2016)

    ADS  Google Scholar 

  • Stangl, R., Kriegel, M., Schmidt, M.: AFORS-HET, Version 2.2, a numerical computer program for simulation of heterojunction solar cells and measurements. In: Proc. WCPEC-4, 4th world conference on photovoltaic energy conversion, Hawaii, May (2006). https://doi.org/10.1109/WCPEC.2006.279681

  • Vojkovic, S., Fernandez, J., Elgueta, S., Vega, F.E., Rojas, S.D., Wheatley, R.A., Seifert, B., Wallentowitz, S., Cabrera, A.L.: Band gap determination in multi-band-gap CuFeO2 delafossite epitaxial thin film by photoconductivity. SN Appl. Sci. 1, 1322 (2019)

    Google Scholar 

  • Wang, J., Fu, W., Jariwala, S., Sinha, I., Jen, A.K., Ginger, D.S.: Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. 4(1), 222–227 (2019)

    Google Scholar 

  • Xu, H., Wu, R., Zhang, J.Y., Han, W., Chen, L., Liang, X., Haw, C.Y., Mazzolini, P., Bierwagen, O., Qi, D.C., Zhang, K.H.: Revealing the electronic structure and optical properties of CuFeO2 as a p-type oxide semiconductor. ACS Appl. Electron. Mater. 3(4), 1834–1841 (2021)

    Google Scholar 

  • Zakutayev, A., Major, J.D., Hao, X., Walsh, A., Tang, J., Todorov, T.K., Wong, L.H., Saucedo, E.: Emerging inorganic solar cell efficiency tables (version 2). J. Phys. Energy. 3, 032003 (2021)

    ADS  Google Scholar 

  • Zhu, T., Deng, Z., Fang, X., Huo, Z., Wang, S., Dong, W., Shao, J., Tao, R., Song, C., Wang, L.: High photovoltages of CuFeO2 based p-type dye-sensitized solar cells. J. Alloys Comp. 685, 836–840 (2016)

    Google Scholar 

Download references

Acknowledgements

AK acknowledge Prof Marc Burgelmann for the SCAPS software package.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

PD, AG and LM performed simulations and prepared the initial draft, and AK conceptualized and prepared the final draft.

Corresponding author

Correspondence to Atul Kumar.

Ethics declarations

Conflict of interests

Authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, D., Anitha, G., Leo, L.M. et al. Theoretical analysis of earth-abundant solar cell based on green absorber CuFeO2. Opt Quant Electron 55, 1262 (2023). https://doi.org/10.1007/s11082-023-05499-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05499-w

Keywords

Navigation