Skip to main content
Log in

Numerical Optimization of Thickness and Optical Band Gap of Absorber and Buffer Layers in Earth-Abundant Cu2ZnSnS4 Thin-Film Solar Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, numerical simulations were employed to examine the influence of thickness and band gap energy of the Cu2ZnSnS4 (CZTS) absorber and Zn(O,S) buffer layer on the performance of the earth-abundant and nontoxic Mo/Cu2ZnSnS4/Zn(O,S)/i-ZnO/ZnO:Al structure. Firstly, simulation was performed on the CZTS-based solar cell with experimental values of thickness (610 nm) and band gap energy (1.51 eV) obtained for the absorber layer CZTS. We found an open-circuit voltage Voc = 1.17 V, a short-circuit current density Jsc = 23.26 mA/cm2, a fill factor FF = 57.31%, and a conversion efficiency η = 15.61%. Then we varied the thickness (from 500 nm to 3000 nm) and gap (from 1.40 eV to 1.60 eV) of CZTS thin film and concluded that the optimized thickness and band gap energy were 2400 nm and 1.48 eV, respectively. Finally, we used these values to found the optimal performance of the device. The optimized results were FF = 21.24%, Jsc = 28.05 mA /cm2, Voc = 3.63 V, and η = 21.64%. It is noted that the solar cell performance remained stable by varying the thickness and gap energy of the Zn(O,S) buffer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that supports the findings in this paper cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. I.M. Dharmadasa, Advances in Thin-Film Solar Cells, 2nd ed., (New York: Jenny Stanford Publishing, 2018).

    Book  Google Scholar 

  2. A. Srivastava, S.K. Tripathy, T.R. Lenka, and V. Goyal, Numerical simulations of novel quaternary chalcogenide Ag2MgSn(S/Se)4 based thin film solar cells using SCAPS 1-D. Sol. Energy 239, 337 (2022).

    Article  CAS  Google Scholar 

  3. L. Et-taya, T. Ouslimane, and A. Benami, Numerical analysis of earth-abundant Cu2ZnSn(SxSe1−x)4 solar cells based on Spectroscopic Ellipsometry results by using SCAPS-1D. Sol. Energy 201, 827 (2020).

    Article  CAS  Google Scholar 

  4. M. Jamil, M. Amami, A. Ali, K. Mahmood, and N. Amina, Numerical modeling of AZTS as buffer layer in CZTS solar cells with back surface field for the improvement of cell performance. Sol. Energy 231, 41 (2022).

    Article  CAS  Google Scholar 

  5. M. Tanaka, Y. Hirose, Y. Harada, M. Takahashi, Y. Sakata, and S. Higashimoto, Fabrication of Cu2ZnSnS4 (CZTS) by co-electrodeposition of Cu-Zn-Sn alloys, and effect of chemical composition of CZTS on their photoelectrochemical water splitting. Res. Chem. 5, 100900 (2023).

    CAS  Google Scholar 

  6. K. Muska, K. Timmo, M. Pilvet, R. Kaupmees, T. Raadik, V. Mikli, M. Grossberg-Kuusk, J. Krustok, R. Josepson, S. Lange, and M. Kauk-Kuusik, Impact of Li and K co-doping on the optoelectronic properties of CZTS monograin powder. Sol. Energy Mater. Sol. Cells 252, 112182 (2023).

    Article  CAS  Google Scholar 

  7. W. Shockley and H.J. Queisser, Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  8. M.S. Rahman, S. Islam, A. Khandaker, T. Hossain, and M.J. Rashid, Bilayer CZTS/Si absorber for obtaining highly efficient CZTS solar cell. Sol. Energy 230, 1189 (2021).

    Article  CAS  Google Scholar 

  9. X. Cui, K. Sun, J. Huang, J.S. Yun, C.-Y. Lee, C. Yan, H. Sun, Y. Zhang, C. Xue, K. Eder, L. Yang, J.M. Cairney, J. Seidel, N.J. Ekins-Daukes, M. Green, B. Hoex, and X. Hao, Cd-free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers. Energy Environ. Sci. 12, 2751 (2019).

    Article  CAS  Google Scholar 

  10. C. Yan, J.L. Huang, K.W. Sun, S. Johnston, Y.F. Zhang, H. Sun, A.B. Pu, M.R. He, F.Y. Liu, K. Eder, L.M. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S.Y. Chen, M.A. Green, and X.J. Hao, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764 (2018).

    Article  CAS  Google Scholar 

  11. J.K. Larsen, F. Larsson, T. Torndahl, N. Saini, L. Riekehr, Y. Ren, A. Biswal, D. Hauschild, L. Weinhardt, C. Heske, and C. Platzer-Bjorkman, Cadmium free Cu2ZnSnS4 solar cells with 9.7% efficiency. Adv. Energy Mater. 9, 1900439 (2019).

    Article  Google Scholar 

  12. J. Zhou, X. Xu, H. Wu, J. Wang, L. Lou, K. Yin, Y. Gong, J. Shi, Y. Luo, D. Li, H. Xin, and Q. Meng, Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat. Energy 8, 526 (2023).

    Article  CAS  Google Scholar 

  13. J. Jiang, H. Xu, L. Zhu, W. Niu, Y. Guo, Y. Li, L. Hu, H. He, and Z. Ye, Structural and optical properties of ZnSO alloy thin films with different S contents grown by pulsed laser deposition. J. Alloys Compd. 582, 535 (2014).

    Article  CAS  Google Scholar 

  14. V. Khomyak, I. Shtepliuk, V. Khranovskyy, and R. Yakimova, Band-gap engineering of ZnO1−xSx films grown by rf magnetron sputtering of ZnS target. Vacuum 121, 120 (2015).

    Article  CAS  Google Scholar 

  15. H.H. Park, R. Heasley, and R.G. Gordon, Atomic layer deposition of Zn(O, S) thin films with tunable electrical properties by oxygen annealing. Appl. Phys. Lett. 102, 132110 (2013).

    Article  Google Scholar 

  16. Y. Zhang, Z. Jia, Z. Zhao, and Y. Zhao, ZnO1−xSx solid solution as potential buffer layer materials for Cu2ZnSnS4-based thin film solar cells: structural and interfacial properties. Adv. Mater. Interfaces 9, 2200376 (2022).

    Article  CAS  Google Scholar 

  17. M. Burgelman, P. Nollet, and S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000).

    Article  Google Scholar 

  18. M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 12, 143 (2004).

    Article  CAS  Google Scholar 

  19. A.C.P. Reyes, R.C.A. Lazaro, K.M. Leyva, J.A.L. Lopez, J.F. Mendez, A.H.H. Jiménez, A.L.M. Zurita, F.S. Carrillo, and E.O. Duran, Study of a lead-free perovskite solar cell using CZTS as HTL to achieve a 20% PCE by SCAPS-1D simulation. Micromachines 12, 1508 (2021).

    Article  Google Scholar 

  20. K.L. Sreevidya, N. Abraham, and C. Sajeev, Simulation studies of CZTS thin film solar cell using different buffer layers. Mater. Today Proc. 43, 3684 (2021).

    Article  CAS  Google Scholar 

  21. M. Rafee Mahbub, S. Islam, F. Anwar, S.S. Satter, and S.M. Ullah, Simulation of CZTS thin film solar cell for different buffer layers for high efficiency performance. South Asian J. Eng. Technol. 2, 1 (2016).

    Google Scholar 

  22. A.R. Latrous, R. Mahamdi, B.N. Touafek, and M. Pasquinelli, Performance enhancement in CZTS solar cells by SCAPS-1D software. Int. J. Thin Films Sci. Technol. 10, 59 (2021).

    Article  Google Scholar 

  23. S. Sharbati, E. Norouzzadeh, and S. Mohammadi, A simulation study to improve the efficiency of ZnO1−xSx/Cu2ZnSn(Sy, Se1−y)4 solar cells by composition-ratio control. Opt. Mater. 78, 259 (2018).

    Article  CAS  Google Scholar 

  24. N. Khemiri, S. Chamekh, and M. Kanzari, Properties of thermally evaporated CZTS thin films and numerical simulation of earth abundant and nontoxic CZTS/Zn(S, O) based solar cells. Sol. Energy 207, 496 (2020).

    Article  CAS  Google Scholar 

  25. M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou, Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74, 736 (2015).

    Article  CAS  Google Scholar 

  26. N. Khemiri and M. Kanzari, Determination and analysis of optical constants and dispersion energy parameters of Zn(S, O) thin films. Mater. Chem. Phys. 214, 185 (2018).

    Article  CAS  Google Scholar 

  27. O.K. Simya, A. Mahaboobbatcha, and K. Balachander, A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248 (2015).

    Article  CAS  Google Scholar 

  28. S. Fadili, B. Hartiti, Z. El Khalidi, A. Kotbi, A. Ridah, and P. Thevenin, Numerical simulation of solar cells based CZTS buffer layer (ZnO1−XSX) using SCAPS-1D software. J. Fundam. Appl. Sci. 9, 1001 (2016).

    Article  Google Scholar 

  29. G. Balaji, N. Prabavathy, R. Balasundaraprabhu, S. Prasanna, E. Echeverria, D.N. McIlroy, K. Sivakumaran, M.D. Kannan, and D. Velauthapillai, Investigations on post sulphurised Cu2ZnSnS4 absorber layer thin films prepared using radio frequency magnetron sputtering. Thin Solid Films 695, 137764 (2020).

    Article  CAS  Google Scholar 

  30. S. Ahmadi, N. Khemiri, A. Cantarero, and M. Kanzari, XPS analysis and structural characterization of CZTS thin films deposited by one-step thermal evaporation. J. Alloys Compd. 925, 166520 (2022).

    Article  CAS  Google Scholar 

  31. C. Tamin, D. Chaumont, O. Heintz, R. Chassagnon, A. Leray, N. Geoffroy, M. Guerineau, and M. Adnane, Investigation of absorber and heterojunction in the pure sulphide kesterite. Bol. Soc. Esp. Ceram. Vidr. 60, 380 (2021).

    Article  CAS  Google Scholar 

  32. F. Lopez-Vergara, A. Galdamez, P. Barahona, and V. Manriquez, Effect of the selenium content in the optical properties of the Kesterite Cu2ZnSnS4−XSeX phases. J. Chil. Chem. Soc. 61, 3291 (2016).

    Article  CAS  Google Scholar 

  33. E. Peksu, M. Terlemezoglu, M. Parlak, and H. Karaagac, Characterization of one-step deposited Cu2ZnSnS4 thin films derived from a single crystalline powder. Renew. Energy 143, 1133 (2019).

    Article  CAS  Google Scholar 

  34. M.Y. Zaki, F. Sava, A.T. Iosif-Daniel Simandan, I. Buruiana, A.E. Stavarache, C. Bocirnea, A. Mihai, and A.G. Velea, A two-step magnetron sputtering approach for the synthesis of Cu2ZnSnS4 films from Cu2SnS3\ZnS stacks. ACS Omega 7, 23800 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P. Alexander, Kirk, Solar Photovoltaic Cells Photons to Electricity, 1st ed., (London: Academic Press, 2015).

    Google Scholar 

  36. N. Kumari and S. Ingole, Enhancement of CZTS photovoltaic device performance with silicon at back-contact: a study using SCAPS-1D. Sol. Energy 236, 301 (2022).

    Article  CAS  Google Scholar 

  37. A. Sharmin, K. Kumar, S.M. Al Mamun, and M. Hossain, Influence of annealing conditions on the performance of sputtered grown CZTS thin film solar cells. AIP Adv. 12, 115025 (2022).

    Article  CAS  Google Scholar 

  38. C. Zeng, D. Li, R. Lin, M. Yuan, W. Xin, P. Gao, and R. Hong, Gradient band gap CZTSSe prepared via sputtering from quaternary ceramic targets followed with annealing under different atmospheres. Sol. Energy 259, 328–337 (2023).

    Article  CAS  Google Scholar 

  39. F. Belarbi, W. Rahal, D. Rached, S. Benghabrit, and M. Adnane, A comparative study of different buffer layers for CZTS solar Cell using Scaps-1D simulation program. Optik 216, 164743 (2020).

    Article  CAS  Google Scholar 

  40. H. Zhang, S. Cheng, J. Yu, H. Zhou, and H. Jia, Prospects of Zn(O, S) as an alternative buffer layer for Cu2ZnSnS4 thin-film solar cells from numerical simulation. Micro Nano Lett. 11, 386 (2016).

    Article  CAS  Google Scholar 

  41. R. Khan, S.F. Ahmed, M. Khalid, and B. Joshi, Investigating effect of CdS buffer layer on the performance of Cu2ZnSnS4 based solar cells using SCAPS-1D. Trans. Electr. Electron. Mater. 22, 177 (2021).

    Article  Google Scholar 

  42. S. Tripathi, B. Kumar, and D.K. Dwivedi, Numerical simulation of non-toxic In2S3/SnS2 buffer layer to enhance CZTS solar cells efficiency by optimizing device parameters. Optik 227, 166087 (2021).

    Article  CAS  Google Scholar 

  43. N. Khoshsirat, N.A. Md Yunus, M.N. Hamidon, S. Shafie, and N. Amin, Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS. Optik 126, 681 (2015).

    Article  CAS  Google Scholar 

  44. S.R. Meher, L. Alex, and Z.C. Balakrishnan, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703 (2016).

    Article  CAS  Google Scholar 

  45. Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, Cu2ZnSnSe4 thin-film solar cells by thermal coevaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5, 1401372 (2015).

    Article  Google Scholar 

  46. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455 (2009).

    Article  CAS  Google Scholar 

  47. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014).

    Article  Google Scholar 

  48. B. Hartiti, H.J.T. Nkuissi, and S. Fadili, Enhancement of output parameters of Cu2ZnSnS4 (CZTS)-based solar cells: numerical simulation using AMPS-1D and SCAPS-1D programs. Afr. Rev. Phys. 12, 88 (2017).

    Google Scholar 

  49. Z. Seboui and S. Dabbabi, First investigation on CZTS electron affinity and thickness optimization using SILVACO-Atlas 2D simulation. Simul. Model. Pract. Theory 126, 102758 (2023).

    Article  Google Scholar 

  50. E.I. Emon, A.M. Islam, M.K. Sobayel, S. Islam, N. Md Akhtaruzzaman, A. Amin, and M.J. Rashid, A comprehensive photovoltaic study on tungsten disulfide (WS2) buffer layer based CdTe solar cell. Heliyon 9(3), e14438 (2023). https://doi.org/10.1016/j.heliyon.2023.e14438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Kauk-Kuusik, K. Timmo, K. Muska, M. Pilvet, J. Krustok, M. Danilson, V. Mikli, R. Josepson, and M. Grossberg-Kuusk, Reduced recombination through CZTS/CdS interface engineering in monograin layer solar cells. J. Phys. Energy 4, 24007 (2022).

    Article  CAS  Google Scholar 

  52. Y.H. Khattak, F. Baig, B.M. Soucase, S. Beg, S.R. Gillani, and S. Ahmed, Efficiency enhancement of novel CNTS/ZnS/Zn(O, S) thin film solar cell. Optik 171, 453 (2018).

    Article  CAS  Google Scholar 

  53. H. Zhang, S. Cheng, J. Yu, Y. Lai, H. Zhou, Q. Zheng, and H. Jia, Effect of Zn(O, S) buffer layer on Cu2ZnSnS4 solar cell performance from numerical simulation. J. Appl. Sci. Eng. 20, 3946 (2017).

    Google Scholar 

Download references

Acknowledgments

N. Khemiri thanks the Tunisian Ministry of Higher Education and Scientific Research for support through the PEJC Young Researchers Encouragement Program (Project code 19PEJC03-11). The authors acknowledge the use of the SCAPS-1D simulator provided by Marc Burgelman and colleagues at the University of Ghent in all the simulations reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

LA: conceptualization, methodology, investigation, formal analysis, writing—original draft. NK: conceptualization, methodology, investigation, writing—review and editing. MK: review and editing.

Corresponding author

Correspondence to N. Khemiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achour, L., Khemiri, N. & Kanzari, M. Numerical Optimization of Thickness and Optical Band Gap of Absorber and Buffer Layers in Earth-Abundant Cu2ZnSnS4 Thin-Film Solar Cells. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11110-z

Keywords

Navigation