Skip to main content
Log in

Study of soliton solutions with different wave formations to model of nonlinear Schrödinger equation with mixed derivative and applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the impact of the integrability criterion on mixed-derivative nonlinear Schrödinger equations, specifically focusing on the Rangwala-Rao \((\mathcal {R}\mathcal {R})\) equation introduced by A. Rangwala in 1990. Our objective is to enhance our understanding of the dispersion effect by examining innovative soliton wave solutions and their interactions. The tanh method is utilized to generate unique solitary wave solutions for the Rangwala-Rao \((\mathcal {R}\mathcal {R})\) equation. The study of the Rangwala-Rao \((\mathcal {R}\mathcal {R})\) holds significance as it has the potential to contribute to the development of more efficient optical fiber communication systems. The numerical solutions presented in this research illustrate the dynamic nature of optical fiber pulse propagation, underscoring the distinctiveness of this work compared to previous scholarly endeavors. The study obtained various soliton solutions, including rational, trigonometric, and hyperbolic functions. The results are presented in graphical form with appropriate parameter values to aid visualization. The originality of our computed outcomes, which represent novel achievements that surpass previously derived solutions, becomes evident when we compare our accomplishments with theirs. These newly examined results are innovative and novel, with the potential to significantly propel the realms of nonlinear optics and mathematical physics forward. This study proves that the computational method used is efficient, brief, and widely applicable, making it valuable to engineers who work with engineering models and dynamical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Akinyemi, L., Senol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021)

    MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Inc, M., Khater, M.M., Rezazadeh, H.: Dynamical behaviour of Chiral nonlinear Schrödinger equation. Opt. Quantum Electr. 54(3), 191 (2022)

    Google Scholar 

  • Ambrosio, V.: Concentration phenomenon for a fractional Schrodinger equation with discontinuous nonlinearity. Discret. Contin. Dyn. Syst. S 26, 14635 (2023)

    Google Scholar 

  • Attia, R.A., Zhang, X., Khater, M.M.: Analytical and hybrid numerical simulations for the (2+1)-dimensional Heisenberg ferromagnetic spin chain. Results Phys. 43, 106045 (2022)

    Google Scholar 

  • Bagarello, F., Passante, R., Trapani, C.: Non-Hermitian Hamiltonians in quantum physics. Springer Proc. Phys. 184, 545696 (2016)

    MATH  Google Scholar 

  • Bo, W.B., Wang, R.R., Fang, Y., Wang, Y.Y., Dai, C.Q.: Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111(2), 1577–1588 (2023)

    Google Scholar 

  • Botmart, T., Khater, M.M.: Unidirectional shallow water wave model, computational simulations. Results Phys. 42, 106010 (2022)

    Google Scholar 

  • Cheng, L., Zhang, Y.: Breather-type solutions and rogue waves to a generalised (2+1)-dimensional nonlinear Schrödinger equation. Pramana 96(1), 52 (2022)

    ADS  Google Scholar 

  • Cinar, M., Secer, A., Bayram, M.: On the optical soliton solutions of time-fractional biswas-arshed equation including the beta or M-truncated derivatives. Opt. Quantum Electr. 55(2), 186 (2023)

    Google Scholar 

  • Darvishi, M.T., Najafi, M., Akinyemi, L., Rezazadeh, H.: Gaussons of some new nonlinear logarithmic equations. J. Nonlinear Opt. Phys. Mater. 32(02), 2350013 (2023)

    ADS  Google Scholar 

  • Geng, X., Li, R., Xue, B.: A vector general nonlinear Schrödinger equation with (m+ n) components. J. Nonlinear Sci. 30(3), 991–1013 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hermann, J., Schatzle, Z., Noe, F.: Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12(10), 891–897 (2020)

    Google Scholar 

  • Hosseini, K., Mirzazadeh, M., Baleanu, D., Salahshour, S., Akinyemi, L.: Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect. Opt. Quantum Electr. 54(3), 177 (2022)

    Google Scholar 

  • Houwe, A., Abbagari, S., Akinyemi, L., Rezazadeh, H., Doka, S.Y.: Peculiar optical solitons and modulated waves patterns in anti-cubic nonlinear media with cubic-quintic nonlinearity. Opt. Quantum Electr. 55(8), 719 (2023)

    Google Scholar 

  • Houwe, A., Abbagari, S., Akinyemi, L., Rezazadeh, H., Doka, S.Y.: Peculiar optical solitons and modulated waves patterns in anti-cubic nonlinear media with cubic-quintic nonlinearity. Opt. Quantum Electr. 55(8), 719 (2023)

    Google Scholar 

  • Khater, M.M.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos Solitons Fractals 169, 113232 (2023)

    MathSciNet  Google Scholar 

  • Khater, M.M.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos Solitons Fractals 167, 113098 (2023)

    MathSciNet  Google Scholar 

  • Khater, M.M.: Physics of crystal, lattices and plasma, analytical and numerical simulations of the Gilson-Pickering equation. Results Phys. 56, 106193 (2023)

    Google Scholar 

  • Khater, M.M.: Effects of integrability criterion on nonlinear Schrödinger equations with mixed derivatives: insights from the Rangwala-Rao equation. Opt. Quantum Electr. 55(9), 779 (2023)

    Google Scholar 

  • Kudryashov, N.A.: Almost general solution of the reduced higher-order nonlinear Schrödinger equation. Optik 230, 166347 (2021)

    ADS  Google Scholar 

  • Kudryashov, N.A.: Optical solitons of the resonant nonlinear Schrödinger equation with arbitrary index. Optik 235, 166626 (2021)

    ADS  Google Scholar 

  • Kudryashov, N.A.: Implicit solitary waves for one of the generalized nonlinear Schrödinger equations. Mathematics 9(23), 3024 (2021)

    Google Scholar 

  • Kudryashov, N.A.: Method for finding optical solitons of generalized nonlinear Schrödinger equations. Optik 261, 169163 (2022)

    ADS  Google Scholar 

  • Liu, X.: Exact solitary wave solutions of the Rangwala-Rao equation. In 2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering pp. 175-178 (2012)

  • Manzhos, S.: Machine learning for the solution of the Schrodinger equation. Mach. Learn. Sci. Technol. 1(1), 013002 (2020)

    Google Scholar 

  • Mostafa, D., Zaky, M.A., Hafez, R.M., Hendy, A.S., Abdelkawy, M.A., Aldraiweesh, A.A.: Tanh Jacobi spectral collocation method for the numerical simulation of nonlinear Schrödinger equations on unbounded domain. Math. Methods Appl. Sci. 46(1), 656–674 (2023)

    ADS  MathSciNet  Google Scholar 

  • Nisar, K.S., Inan, I.E., Inç, M., Rezazadeh, H.: Properties of some higher-dimensional nonlinear Schrödinger equations. Results Phys. 31, 105073 (2021)

    Google Scholar 

  • Omri, M., Abdel-Aty, A.H., Abdel-Khalek, S., Khalil, E.M., Khater, M.M.: Computational and numerical simulations of nonlinear fractional Ostrovsky equation. Alex. Eng. J. 61(9), 6887–6895 (2022)

    Google Scholar 

  • Ozisik, M., Secer, A., Bayram, M., Biswas, A., Gonzalez-Gaxiola, O., Moraru, L., Alghamdi, A.A.: Retrieval of optical solitons with anti-cubic nonlinearity. Mathematics 11(5), 1215 (2023)

    Google Scholar 

  • Parasuraman, E.: Stability of kink, anti kink and dark soliton solution of nonlocal Kundu-Eckhaus equation. Optik 14, 171279 (2023)

    ADS  Google Scholar 

  • Peng, C., Li, Z.: New Traveling Wave Solutions and Dynamic Behavior Analysis of the Nonlinear Rangwala-Rao Model. Available at SSRN 4555133

  • Pfau, D., Spencer, J.S., Matthews, A.G., Foulkes, W.M.C.: Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Phys. Rev. Res. 2(3), 033429 (2020)

    Google Scholar 

  • Rangwala, A.A., Rao, J.A.: Bäcklund transformations, soliton solutions and wave functions of Kaup-Newell and Wadati-Konno-Ichikawa systems. J Math. Phys. 31(5), 1126–1132 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  • Rehman, H.U., Iqbal, I., Hashemi, M.S., Mirzazadeh, M., Eslami, M.: Analysis of cubic-quartic-nonlinear Schrödinger’s equation with cubic-quintic-septic-nonic form of self-phase modulation through different techniques. Optik 69, 171028 (2023)

    Google Scholar 

  • Salzman, P.J.: Investigation of the Time-dependent Schroedinger-Newton Equation. University of California, Davis (2005)

    Google Scholar 

  • Schrodinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049 (1926)

    ADS  Google Scholar 

  • Seadawy, A.R., Tariq, K.U., Rizvi, S.T., Javed, R.: Some optical soliton solutions to the generalized (1+1)-dimensional perturbed nonlinear Schrodinger equation using two analytical approaches. Int. J. Modern Phys. B 36(26), 2250177 (2022)

    Google Scholar 

  • Shakeel, M., Bibi, A., Chou, D., Zafar, A.: Study of optical solitons for Kudryashov’s quintuple power-law with dual form of nonlinearity using two modified techniques. Optik 273, 170364 (2023)

    ADS  Google Scholar 

  • Singh, S.S.: Exact solutions of Kundu-Eckhaus equation and Rangwala-Rao equation by reduction to Liénard equation. Asian J. Math. Phys. 301, 11 (2016)

    Google Scholar 

  • Singh, S.S.: Exact solutions of Kundu-Eckhaus equation and Rangwala-Rao equation by reduction to Liénard equation. Asian J. Math. Phys. 11, 0301 (2016)

    Google Scholar 

  • Tariq, K.U., Zainab, H., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Mousa, A.A.A.: On some novel optical wave solutions to the paraxial M-fractional nonlinear Schrödinger dynamical equation. Opt. Quantum Electr. 53, 1–14 (2021)

    Google Scholar 

  • Tariq, K.U., Wazwaz, A.M., Kazmi, S.R.: On the dynamics of the (2+1)-dimensional chiral nonlinear Schrodinger model in physics. Optik 285, 170943 (2023)

    ADS  Google Scholar 

  • Ullah, N.: Exact solutions of paraxial wave dynamical model with Kerr law non-linearity using analytical techniques. Open. J. Math. Sci. 7, 172–179 (2023)

    Google Scholar 

  • Veeresha, P., Prakasha, D.G., Singh, J., Kumar, D., Baleanu, D.: Fractional Klein-Gordon-Schrödinger equations with mittag-leffler memory. Chin. J. Phys. 68, 65–78 (2020)

    Google Scholar 

  • Wang, G.: A new (3+1)-dimensional Schrodinger equation: derivation, soliton solutions and conservation laws. Nonlinear Dyn. 104(2), 1595–1602 (2021)

    Google Scholar 

  • Wazwaz, A.M., Tariq, K.U., Ahmed, A.: On some optical soliton structures to the Lakshmanan-Porsezian-Daniel model with a set of nonlinearities. Opt. Quantum Electr. 54(7), 432 (2022)

    Google Scholar 

  • Xu, L., Liu, C., Shi, Y., Yi, Z., Lv, J., Yang, L., Chu, P.K.: High-sensitivity photonic crystal fiber methane sensor with a ring core based on surface plasmon resonance and orbital angular momentum theory. Optik 286, 170941 (2023)

    ADS  Google Scholar 

  • Younas, U., Sulaiman, T.A., Ren, J.: Propagation of M-truncated optical pulses in nonlinear optics. Opt. Quantum Electr. 55(2), 102 (2023)

    Google Scholar 

  • Younas, U., Ren, J., Akinyemi, L., Rezazadeh, H.: On the multiple explicit exact solutions to the double-chain DNA dynamical system. Math. Methods Appl. Sci. 46(6), 6309–6323 (2023)

    ADS  MathSciNet  Google Scholar 

  • Zainab, H., Tariq, K.U., Seadawy, A.R., Ashraf, M.A., Rizvi, S.T.R.: Some new optical dromions to (2+1)-dimensional nonlinear Schrödinger equation with Kerr law of nonlinearity. Opt. Quantum Electr. 54(6), 385 (2022)

    Google Scholar 

  • Zhang, X., Attia, R.A., Khater, M.M.: Accurate computational simulations of perturbed Chen-Lee-Liu equation. Results Phys. 45, 106227 (2023)

    Google Scholar 

  • Zhang, X., Attia, R.A., Khater, M.M.: Accurate computational simulations of perturbed Chen-Lee-Liu equation. Results Phys. 45, 106227 (2023)

    Google Scholar 

Download references

Funding

The authors declare that they have no any funding source.

Author information

Authors and Affiliations

Authors

Contributions

J.A.: Resources, supervision, validation, acquisition. S.R.: Conceptualization, methodology, writing—original draft, formal analysis, validation. software.

Corresponding author

Correspondence to Jamshad Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

All authors have agreed and have given their consent for the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Rani, S. Study of soliton solutions with different wave formations to model of nonlinear Schrödinger equation with mixed derivative and applications. Opt Quant Electron 55, 1195 (2023). https://doi.org/10.1007/s11082-023-05477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05477-2

Keywords

Navigation