Skip to main content
Log in

U-shaped plastic optical fiber sensor for phosphate detection in water

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Evanescent wave optical fibre sensors have attracted a lot of attention for the detection of chemical species due to their sensitivity, selectivity, and repeatability. In addition, plastic optical fibre sensors are inexpensive, simple to fabricate, and not only act as sensors, but the same fibre can also be used to transport sensor signals. The fibre sensor’s sensitivity can be increased by removing the fibre cladding partially or fully. Also, different geometries have been reported to enhance the sensitivity of fibre sensors even more. In this paper, we report a U-shaped optical fibre sensor that utilises evanescent wave absorption as its primary mechanism for determining phosphate concentration in water. The U-shaped geometry offers enhanced sensitivity as compared to straight geometry. The developed U-shaped plastic optical fibre probe demonstrates impressive linear performance, which is evident in its remarkable regression coefficient of 98.48% and sensitivity of 0.0991 O.D./ppm. Due to their distinct features, plastic optical fibre sensors pave the way for improved water quality monitoring and analysis, which presents a vital contribution to both the industrial and environmental domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Almomani, F.A., Örmeci, B.: Estimation of algae concentration in water solutions using spectrophotometry measurements and absorbance first derivative. Adv. Mater. Tech Connect Briefs 2016(2), 144–147 (2016)

    Google Scholar 

  • Aluker, N., Herrmann, M., Suzdaltseva, Y.: A Spectrophotometric study of nitrate and nitrite salts and their aqueous solutions. Opt. Spectrosc. 127, 991–996 (2019). https://doi.org/10.1134/S0030400X19120026

    Article  Google Scholar 

  • Alzahrani, L., El-Ghamry, H.A., Saber, A.L., Mohammed, G.I.: Spectrophotometric determination of Mercury (II) ions in laboratory and Zamzam water using bis Schiff base ligand based on 1, 2, 4-Triazole-3, 5-diamine and o-Vaniline. Arab. J. Chem. 16(1), 104418–520 (2023)

    Article  Google Scholar 

  • Aoki, H., et al.: Voltammetric detection of inorganic phosphate using ion-channel sensing with self-assembled monolayers of a hydrogen bond-forming receptor. Biosens. Bioelectr. 18(2–3), 261–267 (2003)

    Article  Google Scholar 

  • Armin, A., Soltanolkotabi, M., Feizollah, P.: On the pH and concentration response of an evanescent field absorption sensor using a coiled-shape plastic optical fiber. Sens. Actuators A 165(2), 181–184 (2011). https://doi.org/10.1016/j.sna.2010.10.006

    Article  Google Scholar 

  • Ashraf, M., Beg, M.T., Moin, F., Rajesh, R., Singhal, G.: U-bent plastic optical fiber sensor for iron in iron supplements. IEEE Sens. J. 22(15), 14921–14928 (2022)

    Article  ADS  Google Scholar 

  • Ashraf, M., Beg, M.T., Moin, F., Rajesh, R., Singhal, G.: Sensitivity enhancement in U-shaped evanescent wave fiber sensor. IEEE Sens. J. (2023). https://doi.org/10.1109/JSEN.2023.3262864e

    Article  Google Scholar 

  • Aßmann, S., Frank, C., Petersen, W., & Körtzinger, A. (2013, April). Autonomous pH and alkalinity sensors for the characterization of the carbonate system in coastal areas. In EGU General Assembly Conference Abstracts (pp. EGU2013-8760).

  • Beg, M.T., Tyagi, R.K., Rajesh, R., Singhal, G., Dawar, A.L.: Optical spectroscopic based in-line iodine flow measurement system–an application to COIL. Sens. Actuators B Chem. 109(2), 375–380 (2005)

    Article  Google Scholar 

  • Berchmans, S., Issa, T.B., Singh, P.: Determination of inorganic phosphate by electroanalytical methods: a review. Anal. Chim. Acta 729, 7–20 (2012)

    Article  Google Scholar 

  • Bingxne, L., Takaori, N., Hiroyuki, N., Manorm, N., Motomitsu, K.: J. Appl. Glycosci. 156, 809–891 (2011)

    Google Scholar 

  • Chauhan, S., Punjabi, N., Sharma, D., Mukherji, S.: Evanescent wave absorption-based S-shaped fiber-optic biosensor for immune sensing applications. Proc. Eng. 168, 117–120 (2016). https://doi.org/10.1016/j.proeng.2016.11.161

    Article  Google Scholar 

  • Conrath, N., Gründig, B., Hüwel, S., Camman, K.: Anal. Chim. Acta 309, 456121 (1995)

    Article  Google Scholar 

  • D’Urso, E.M., Coulet, P.R.: Effect of enzyme ratio and enzyme loading on the performance of a bienzymatic electrochemical phosphate biosensor. Anal. Chim. Acta 281, 535–542 (1993)

    Article  Google Scholar 

  • De-Jun, F., Mao-Sen, Z., Liu, G., Xi-Lu, L., Dong-Fang, J.: D-shaped plastic optical fiber sensor for testing refractive index. IEEE Sens. J. 14(5), 1673–1676 (2014). https://doi.org/10.1109/JSEN.2014.2301911

    Article  ADS  Google Scholar 

  • Fahim, F., Mainuddin, M., Mittal, U., Kumar, J., Nimal, A.T.: Novel SAW CWA detector using temperature programmed desorption. IEEE Sens. J. 21(5), 5914–5922 (2021). https://doi.org/10.1109/jsen.2020.3042766

    Article  ADS  Google Scholar 

  • Ferreira, F.T., Mesquita, L.S., Mesquita, R.B., Rangel, A.O.: Improved sequential injection method for phosphate quantification within a wide dynamic range with in-line pre-concentration to monitor soil leachates. Talanta Open 2, 100015 (2020)

    Article  Google Scholar 

  • Fogg, A.G., Bsebsu, N.K., Birch, B.J.: Differential-pulse anodic voltammetric determination of phosphate, silicate, arsenate and germanate as β-heteropolymolybdates at a stationary glassy-carbon electrode. Talanta 45, 473–476 (1981). https://doi.org/10.1016/0039-9140(81)80071-9

    Article  Google Scholar 

  • Fogg, A.G., Bsebsu, N.K., Birch, B.J.: Differential-pulse anodic voltammetric determination of phosphate, silicate, arsenate and germanate as β-heteropolymolybdates at a stationary glassy-carbon electrode. Talanta 28(7), 473–476 (1981)

    Article  Google Scholar 

  • Gao, S.S., Qiu, H.W., Zhang, C., Jiang, S.Z., Li, Z., Liu, X.Y., Yue, W.W., Yang, C., Huo, Y.Y., Feng, D.J., Li, H.S.: Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection. RSC Adv. 6(19), 15808–15815 (2016)

    Article  ADS  Google Scholar 

  • Gupta, B.D., Dodeja, H., Tomar, A.K.: Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quant. Electron. 28, 1629–1639 (1996). https://doi.org/10.1007/BF00331053

    Article  Google Scholar 

  • Gupta, B.D., Sharma, N.K.: Fabrication and characterization ofU-shaped fiber-optic pH probes. Sens. Actuators B Chem. 82(1), 89–93 (2002)

    Article  Google Scholar 

  • Gupta, B., Singh, C.: Evanescent-absorption coefficient for diffuse source illumination: uniform- and tapered-fiber sensors. Appl. Opt. 33, 2737–2742 (1994)

    Article  ADS  Google Scholar 

  • Hasumoto, H., Imazu, T., Miura, T., Kogure, K.: Use of an optical oxygen sensor to measure dissolved oxygen in seawater. J. Oceanogr. 62, 99–103 (2006). https://doi.org/10.1007/s10872-006-0036-8

    Article  Google Scholar 

  • Jindal, M.K., Mainuddin, M., Veerabuthiran, S., Razdan, A.K.: Laser-based systems for standoff detection of CWA: a short review. IEEE Sens. J. 21(4), 4085–4096 (2020)

    Article  ADS  Google Scholar 

  • Jońca, J., León Fernández, V., Thouron, D., Paulmier, A., Graco, M., Garçon, V.: Phosphate determination in seawater: toward an autonomous electrochemical method. Talanta 15(87), 161–167 (2011). https://doi.org/10.1016/j.talanta.2011.09.056

    Article  Google Scholar 

  • Khijwania, S.K., Srinivasan, K.L., Singh, J.P.: An evanescent waveoptical fiber relative humidity sensor with enhanced sensitivity. Sens. Actuators B Chem. 104(2), 217–222 (2005)

    Article  Google Scholar 

  • Kim, H.J., Byun, H., Song, Y.B., Shin, S., Cho, S., Pyeon, C.H., Lee, B.: Multi-channel fiber-optic temperature sensor system using an optical time-domain reflectometer. Results Phys. 11, 24 (2018). https://doi.org/10.1016/j.rinp.2018.10.024

    Article  Google Scholar 

  • Korposh, S., James, S.W., Lee, S.W., Tatam, R.P.: Tapered optical fibre sensors: current trends and future perspectives. Sensors 19(10), 2294 (2019)

    Article  ADS  Google Scholar 

  • Kumar, R.: Phosphate sensing. Curr. Opin. Nephrol. Hypertens. 18(4), 281–284 (2009). https://doi.org/10.1097/MNH.0b013e32832b5094.PMID:19352177;PMCID:PMC2872784

    Article  Google Scholar 

  • Lawal, A., Adeloju, S.: Progress and recent advances in phosphate sensors: a review. Talanta 114, 191–203 (2013). https://doi.org/10.1016/j.talanta.2013.03.031

    Article  Google Scholar 

  • Lefevre, F., Chalifour, A., Yu, L., Chodavarapu, V., Juneau, P., Izquierdo, R.: Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab Chip 12, 787–793 (2011). https://doi.org/10.1039/c2lc20998e

    Article  Google Scholar 

  • Leiboff, S.L.: A colorimetric method for the determination of lipoidal phosphorus in blood. J. Biol. Chem. 80(1), 211–214 (1928)

    Article  Google Scholar 

  • Leung, A., Shankar, P.M., Mutharasan, R.: A review of fiber-optic biosensors. Sens. Actuators B Chem. 125(2), 688–703 (2007)

    Article  Google Scholar 

  • Lin, M., Hu, X., Pan, D., Han, H.: Determination of iron in seawater: from the laboratory to in situ measurements. Talanta 188, 135–144 (2018)

    Article  Google Scholar 

  • Mainuddin, A. M. (2021) Simulation of optical FBG based sensor for measurement of temperature, strain and salinity. In International Conference on Optical and Wireless Technologies. Springer Nature, Singapore.

  • Mignani, A.G., Mencaglia, A.A.: Chemically mediated absorptionspectroscopy using optical fiber instrumentation. IEEE Sens. J. 2, 52–57 (2002)

    Article  ADS  Google Scholar 

  • Ogabiela, E., Adeloju, S.B.: A potentiometric phosphate biosensor based on entrapment of pyruvate oxidase in a polypyrrole film. Anal. Methods 6(14), 5290–5297 (2014)

    Article  Google Scholar 

  • Pandikudy, B., Pillai, A., Madhusoodanan, K.N.: Fiber optic sensor for the detection of ammonia phosphate, iron in water. J. Optics. 42, 78 (2013). https://doi.org/10.1007/s12596-013-0121-5

    Article  Google Scholar 

  • Punjabi, N., Satija, J., Mukherji, S.: Evanescent wave absorption based fiber-optic sensor - cascading of bend and tapered geometry for enhanced sensitivity. In: Mason, A., Mukhopadhyay, S., Jayasundera, K. (eds.) Sensing Technology: Current Status and Future Trends III Smart Sensors, Measurement and Instrumentation. Springer, Cham (2015). https://doi.org/10.1007/978-3-31

    Chapter  Google Scholar 

  • Razzaque, M.S.: Phosphate toxicity: new insights into an old problem. Clin. Sci. Lond. 120(3), 91–97 (2011). https://doi.org/10.1042/CS20100377.PMID:20958267;PMCID:PMC3120105

    Article  Google Scholar 

  • SahooSuban, K., et al.: Potentiometric and spectrophotometric study of a new dipodal ligand N, N′-bis 2-[(2-hydroxybenzylidine) amino] ethyl malonamide with Co (II), Ni (II), Cu (II) and Zn (II). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 63, 574–586 (2006)

    Article  ADS  Google Scholar 

  • Sai, V.V.R., Kundu, T., Mukherji, S.: Novel U-bent fiber optic probe for localized surface plasmon resonance-based biosensor. Biosens. Bioelectron. 24(9), 2804–2809 (2009). https://doi.org/10.1016/j.bios.2009.02.007

    Article  Google Scholar 

  • Sheeba, M., et al.: Fibre optic sensor for the detection of adulterant traces in coconut oil. Meas. Sci. Technol. 16, 2247–2250 (2005). https://doi.org/10.1088/0957-0233/16/11/016

    Article  ADS  Google Scholar 

  • Shen, L.Q., Amatulli, G., Sethi, T., et al.: Estimating nitrogen and phosphorus concentrations in streams and rivers, within a machine learning framework. Sci. Data 7, 161 (2020). https://doi.org/10.1038/s41597-020-0478-7

    Article  Google Scholar 

  • Singhal, G., Tyagi, R.K., Maini, A.K.: Diagnostics and data acquisition for chemical oxygen iodine laser. IEEE Trans. Instrum. Meas. 61(6), 1747–1756 (2012)

    Article  ADS  Google Scholar 

  • Slatopolsky, E.: The intact nephron hypothesis: the concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kidney Int. 79, S3–S8 (2011)

    Article  Google Scholar 

  • Snyder, A.W., Love, J.D.: Optical Waveguide Theory, vol. 175. Chapman and hall, London (1983)

    Google Scholar 

  • Verma, R., Gupta, B.D.: Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. 166, 568–575 (2015). https://doi.org/10.1016/j.foodchem.2014.06.045

    Article  Google Scholar 

  • Wang, L., Biswas, N., Bewtra, J.K., Taylor, K.E.: A simple colorimetric method for analysis of aqueous phenylenediamines and aniline. J. Environ. Eng. Sci. 4(6), 423–427 (2005)

    Article  Google Scholar 

  • Xu, K., Li, Y., Li, M.: Potentiometric phosphate ion sensor based on electrochemical modified tungsten electrode. ACS Omega (2021). https://doi.org/10.1021/acsomega.1c00195

    Article  Google Scholar 

  • Yaqoob, M., Nabi, A., Worsfold, P.J.: Anal. Chim. Acta 510, 213–218 (2004)

    Article  Google Scholar 

  • Zhang, M., Zhu, G., Li, T., Lou, X., Zhu, L.: A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Opt. Commun. 462, 124750 (2020). https://doi.org/10.1016/j.optcom.2019.124750

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Life Science Research Board(LSRB, DRDO) under the DRDO project LSRB-393.

Funding

This work is supported by the Life Science Research Board (LSRB, DRDO) under the DRDO project LSRB-393.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design were done by M.A., and M.M. Material preparation, data collection and analysis were performed by M.A., M.M. and F.M. Analysis was performed by M.A., M.M., M.T.B., F.M., A.S., S.K.D. and G.K. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mainuddin Mainuddin.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M., Mainuddin, M., Beg, M.T. et al. U-shaped plastic optical fiber sensor for phosphate detection in water. Opt Quant Electron 55, 1192 (2023). https://doi.org/10.1007/s11082-023-05466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05466-5

Keywords

Navigation