Skip to main content
Log in

A dual-band terahertz metamaterial sensor with high Q-factor and sensitivity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A terahertz metamaterial absorption sensor with polarization insensitivity and dual-band characteristics is designed and analyzed in this paper. The proposed sensor produces two absorption peaks at 0.73 and 2.2 THz, with absorptivity up to 99.8%, and their Q-factor is 22.8 and 40.7, respectively. In addition, when the refractive index is 1.4, and the THz wave is vertically incident, by varying the thickness of the analyte layer in the range of 1–8 \(\upmu\)m, we get the average thickness sensitivity of the two absorption peaks is 4.1 and 11.7 GHz/\(\upmu\)m. Further, when the analyte layer thickness is 10 \(\upmu\)m, and the THz wave is vertically incident, too, by changing the RI in the range of 1–2, the average refractive index sensitivity of the two absorption peaks is 163 and 488 GHz/RIU with the figure of merit (FOM) are 5.09 and 9.04, respectively. Furthermore,we modified the structure to improve the refractive index sensitivity of the two absorption peaks to 319 and 1015 GHz/RIU. Therefore, this absorber can be used in nondestructive testing due to the above characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abdulkarim, Y.I., Altintas, O., Karim, A.S., Awl, H.N., Muhammadsharif, F.F., Alkurt, F.Ö., Bakir, M., Appasani, B., Karaaslan, M., Dong, J.: Highly sensitive dual-band terahertz metamaterial absorber for biomedical applications: simulation and experiment. ACS Omega 7, 38094–38104 (2022)

    Article  Google Scholar 

  • Abdulkarim, Y.I., Altintas, O., Karim, A.S., Awl, H.N., Muhammadsharif, F.F., Alkurt, F.Ö., Bakir, M., Appasani, B., Karaaslan, M., Dong, J.: Highly sensitive dual-band terahertz metamaterial absorber for biomedical applications: simulation and experiment. ACS Omega 7, 38094–38104 (2022). https://doi.org/10.1021/acsomega.2c06118

    Article  Google Scholar 

  • Ahmed, K., Ahmed, F., Roy, S., Paul, B.K., Aktar, Mst.N., Vigneswaran, D., Islam, M.S.: Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens. J. 19, 3368–3375 (2019). https://doi.org/10.1109/JSEN.2019.2895166

  • Azab, M.Y., Hameed, M.F.O., Nasr, A.M., Obayya, S.S.A.: Highly sensitive metamaterial biosensor for cancer early detection. IEEE Sens. J. 21, 7748–7755 (2021)

    Article  ADS  Google Scholar 

  • Bilal, R.M.H., Naveed, M.A., Baqir, M.A., Ali, M.M., Rahim, A.A.: Design of a wideband terahertz metamaterial absorber based on pythagorean-tree fractal geometry. Opt. Mater. Express 10, 3007–3020 (2020). https://doi.org/10.1364/OME.409677

    Article  ADS  Google Scholar 

  • Bolin, F.P., Preuss, L.E., Taylor, R.C., Ference, R.J.: Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt. 28, 2297–2303 (1989). https://doi.org/10.1364/AO.28.002297

    Article  ADS  Google Scholar 

  • Chen, T., Liang, D., Jiang, W.: A tunable terahertz graphene metamaterial sensor based on dual polarized plasmon-induced transparency. IEEE Sens. J. 22, 14084–14090 (2022)

    Article  ADS  Google Scholar 

  • Cong, L., Singh, R.: Sensing with THz metamaterial absorbers. arXiv preprint arXiv:1408.3711 (2014)

  • Hu, F., Wang, L., Quan, B., Xu, X., Li, Z., Wu, Z., Pan, X.: Design of a polarization insensitive multiband terahertz metamaterial absorber. J. Phys. D Appl. Phys. 46, 195103 (2013). https://doi.org/10.1088/0022-3727/46/19/195103

    Article  ADS  Google Scholar 

  • Kovačević, A., Potrebić, M., Tošić, D.: Sensitivity characterization of multi-band THz metamaterial sensor for possible virus detection. Electronics-Switz 11, 699 (2022). https://doi.org/10.3390/electronics11050699

    Article  Google Scholar 

  • Lan, F., Luo, F., Mazumder, P., Yang, Z., Meng, L., Bao, Z., Zhou, J., Zhang, Y., Liang, S., Shi, Z., Khan, A.R., Zhang, Z., Wang, L., Yin, J., Zeng, H.: Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel. Biomed. Opt. Express 10, 3789–3799 (2019). https://doi.org/10.1364/BOE.10.003789

    Article  ADS  Google Scholar 

  • Li, F., He, K., Tang, T., Mao, Y., Wang, R., Li, C., Shen, J.: The terahertz metamaterials for sensitive biosensors in the detection of ethanol solutions. Opt. Commun. 475, 126287 (2020). https://doi.org/10.1016/j.optcom.2020.126287

    Article  Google Scholar 

  • Li, Z., Yi, Z., Liu, T., Liu, L., Chen, X., Zheng, F., Zhang, J., Li, H., Wu, P., Yan, P.: Three-band perfect absorber with high refractive index sensing based on an active tunable Dirac semimetal. Phys. Chem. 23, 17374–17381 (2021)

    Google Scholar 

  • Li, D., Hu, F., Zhang, H., Chen, Z., Huang, G., Tang, F., Lin, S., Zou, Y., Zhou, Y.: Identification of early-stage cervical cancer tissue using metamaterial terahertz biosensor with two resonant absorption frequencies. IEEE J. Sel. Top. Quant. 27, 1–7 (2021)

    Google Scholar 

  • Li, D., Hu, F., Zhang, H., Chen, Z., Huang, G., Tang, F., Lin, S., Zou, Y., Zhou, Y.: Identification of early-stage cervical cancer tissue using metamaterial terahertz biosensor with two resonant absorption frequencies. IEEE J. Sel. Top. Quant. 27, 1–7 (2021)

    Google Scholar 

  • Liang, Y., Mo, H., Ma, M., Zhao, Q., and Lv, Y.: Dual-band terahertz biosensor based on reflective structure with metasurface integration. In: 2022 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC) IEEE, pp. 1–3 (2022)

  • Ma, A., Zhong, R., Wu, Z., Wang, Y., Yang, L., Liang, Z., Fang, Z., Liu, S.: Ultrasensitive THz sensor based on centrosymmetric F-shaped metamaterial resonators. Front. Phys.-Lausanne 8, 584639 (2020). https://doi.org/10.3389/fphy.2020.584639

    Article  Google Scholar 

  • Ma, L., Liu, Y., Zhu, Y., Gu, W.: Sensing performance of triple-band terahertz metamaterial absorber based on snowflake-shaped resonators. Photonics-Basel 9, 777 (2022). https://doi.org/10.3390/photonics9100777

    Article  Google Scholar 

  • Manikandan, E., Karthigeyan, K.A., Arivarasi, A., Papanasam, E.: High-Q and FOM dual-band polarization dependent ultra-narrowband terahertz metamaterial sensor. IEEE Photonics J. 15, 1–6 (2023)

    Article  Google Scholar 

  • Naveed, M.A., Bilal, R.M.H., Baqir, M.A., Bashir, M.M., Ali, M.M., Rahim, A.A.: Ultrawideband fractal metamaterial absorber made of nickel operating in the UV to IR spectrum. Opt. Express 29, 42911–42923 (2021). https://doi.org/10.1364/OE.446423

    Article  ADS  Google Scholar 

  • Naveed, M.A., Bilal, R.M.H., Rahim, A.A., Baqir, M.A., Ali, M.M.: Polarization-insensitive dual-wideband fractal meta-absorber for terahertz applications. Appl. Opt. 60, 9160–9166 (2021). https://doi.org/10.1364/AO.438237

    Article  ADS  Google Scholar 

  • Niharika, N., Singh, S.: Highly sensitive tunable terahertz absorber for biosensing applications. Optik 273, 170476 (2023). https://doi.org/10.1016/j.ijleo.2022.170476

    Article  ADS  Google Scholar 

  • Pendry, J.: Negative refraction. Contemp. Phys. 45, 191–202 (2004)

    Article  ADS  Google Scholar 

  • Roh, Y., Lee, S.-H., Kwak, J., Song, H.S., Shin, S., Kim, Y.K., Wu, J.W., Ju, B.-K., Kang, B., Seo, M.: Terahertz imaging with metamaterials for biological applications. Sens. Actuat. B-Chem. 352, 130993 (2022). https://doi.org/10.1016/j.snb.2021.130993

    Article  Google Scholar 

  • Saadeldin, A.S., Hameed, M.F.O., Elkaramany, E.M.A., Obayya, S.S.A.: Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. 19, 7993–7999 (2019)

    Article  ADS  Google Scholar 

  • Sabah, C., Mulla, B., Altan, H., Ozyuzer, L.: Cross-like terahertz metamaterial absorber for sensing applications. Pramana—J. Phys. 91, 17 (2018)

  • Sharma, P., Sharan, P.: Design of photonic crystal based ring resonator for detection of different blood constituents. Opt. Commun. 348, 19–23 (2015). https://doi.org/10.1016/j.optcom.2015.03.015

    Article  ADS  Google Scholar 

  • Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  • Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2–11 (2007)

    Article  ADS  Google Scholar 

  • Silalahi, H.M., Chen, Y.-P., Shih, Y.-H., Chen, Y.-S., Lin, X.-Y., Liu, J.-H., Huang, C.-Y.: Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 9, 1970 (2021). https://doi.org/10.1364/PRJ.433335

    Article  Google Scholar 

  • Silalahi, H.M., Chen, Y.-P., Shih, Y.-H., Chen, Y.-S., Lin, X.-Y., Liu, J.-H., Huang, C.-Y.: Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 9, 1970–1978 (2021). https://doi.org/10.1364/PRJ.433335

    Article  Google Scholar 

  • Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  ADS  Google Scholar 

  • Tan, S., Yan, F., Wang, W., Zhou, H., Hou, Y.: Ultrasensitive sensing with three-dimensional terahertz metamaterial absorber. J. Opt.-UK 20, 055101 (2018)

  • Tao, H., Bingham, C.M., Strikwerda, A.C., Pilon, D., Shrekenhamer, D., Landy, N.I., Fan, K., Zhang, X., Padilla, W.J., Averitt, R.D.: Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B 78, 241103 (2008). https://doi.org/10.1103/PhysRevB.78.241103

    Article  ADS  Google Scholar 

  • Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\epsilon\) and \(\mu\). Usp. fiz. nauk 92(7), 517 (1967)

  • Wang, W., Yan, F., Tan, S., Li, H., Du, X., Zhang, L., Bai, Z., Cheng, D., Zhou, H., Hou, Y.: Enhancing sensing capacity of terahertz metamaterial absorbers with a surface-relief design. Photonics Res. 8, 519–527 (2020). https://doi.org/10.1364/PRJ.386040

    Article  Google Scholar 

  • Wang, D., Xu, K.-D., Luo, S., Cui, Y., Zhang, L., Cui, J.: A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale 15, 3398–3407 (2023). https://doi.org/10.1039/D2NR05820K

    Article  Google Scholar 

  • Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J.: Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014)

    Article  ADS  Google Scholar 

  • Yang, K., Li, J., Lamy de la Chapelle, M., Huang, G., Wang, Y., Zhang, J., Xu, D., Yao, J., Yang, X., Fu, W.: A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens. Bioelectron. 175, 112874 (2021). https://doi.org/10.1016/j.bios.2020.112874

    Article  Google Scholar 

  • Yang, J., Lin, Y.-S.: Design of tunable terahertz metamaterial sensor with single- and dual-resonance characteristic. Nanomaterials-Basel 11, 2212 (2021)

    Article  Google Scholar 

  • Zakir, S., Bilal, R.M.H., Naveed, M.A., Baqir, M.A., Khan, M.U.A., Ali, M.M., Saeed, M.A., Mehmood, M.Q., Massoud, Y.: Polarization-insensitive, broadband, and tunable terahertz absorber using slotted-square graphene meta-rings. IEEE Photonics J. 15, 1–8 (2023). https://doi.org/10.1109/JPHOT.2022.3229900

    Article  Google Scholar 

  • Zhou, J., Economon, E.N., Koschny, T., Soukoulis, C.M.: Unifying approach to left-handed material design. Opt. Lett. 31, 3620–3622 (2006). https://doi.org/10.1364/OL.31.003620

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Natural Science Foundation of Guangxi (2021GXNSFBA196081), in part by the National Natural Science Foundation of China (62063003), in part by the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ23107) and in part by the by the Guangxi postdoctoral special fund.

Author information

Authors and Affiliations

Authors

Contributions

Huo Zhang: Supervision, Software, Writing-review and editing. Chengfeng Liu: Data Simulation, principle analysis, data curation, and original writing. Chuanpei Xu: Writing-review and editing. Zhi Li: Writing-review and editing. Yuee Wang: Software, principle analysis. Yifu Peng: Data Simulation, data curation.

Corresponding author

Correspondence to Huo Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Ethics approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, C., Xu, C. et al. A dual-band terahertz metamaterial sensor with high Q-factor and sensitivity. Opt Quant Electron 55, 1126 (2023). https://doi.org/10.1007/s11082-023-05456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05456-7

Keywords

Navigation