Skip to main content
Log in

Dual-band detection based on metamaterial sensor at terahertz frequency

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

This work reported a novel terahertz sensor based on metamaterial absorber. The proposed structure is composed of rectangular metallic resonator made of gold placed above on dielectric medium of a polyimide and a metallic board at the bottom. Due to high-intensity field energy confinement in the sensing regime, two resonance peaks occur at 1.355 THz and 2.785 THz with absorption nearly 100% is achieved. The proposed structure represents sharp resonances with a highest Q factor of 69.6 in the dual-band absorption spectra. The proposed structure is highly sensitive to the change of refractive index (RI) of the surrounding medium at fixed analyte. Furthermore, the proposed sensor exhibits high sensitivity of 0.735THz/RIU, and high FOM of 18.4 RIU−1 in the refractive index ranging from 1 to 2 with fixed analyte thickness of 35 μm. Moreover, the sensitivity and absorption strength influence of the sensor on the sample thickness covered by the sensor surface is also analyzed. Due to high Q factor and sensitivity, the design RI sensor is successfully employed in sensing and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All the data and materials of this study are available within the article.

References

  1. Grigorenko, A.N., Geim, A.K., Gleeson, H.F., Zhang, Y., Firsov, A.A., Khrushchev, I.Y., Petrovic, J.: Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005)

    Article  ADS  Google Scholar 

  2. Schuriga, D., Mock, J.J., Smith, D.R.: Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006)

    Article  ADS  Google Scholar 

  3. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  4. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  5. Seddon, N., Bearpark, T.: Observation of the inverse Doppler effect. Science 302(5650), 1537–1540 (2003)

    Article  ADS  Google Scholar 

  6. Churig, D.S., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequency. Science 314(5801), 977–980 (2006)

    Article  ADS  Google Scholar 

  7. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  8. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of e and µ. Sov. Phys. Usp. 10(4), 509–514 (1968)

    Article  ADS  Google Scholar 

  9. Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv Mater 24, 98 (2012)

    Google Scholar 

  10. Cui, Y., He, Y., Jin, Y., Ding, F., Yang, L., Ye, Y., Zhong, S., Lin, Y., He, S.: Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photon Rev. 8(4), 495–520 (2014)

    Article  ADS  Google Scholar 

  11. Ghobadi, A., Hajian, H., Butun, B., Ozbay, E.: Strong light-matter interaction in lithography free planar metamaterial perfect absorbers. ACS Photonics 5(11), 4203–4221 (2018)

    Article  Google Scholar 

  12. Bhattarai, K., Silva, S., Song, K., Urbas, A., Lee, S.J., Ku, Z., Zhou, J.: Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces. Sci. Rep. 7(1), 10569 (2017)

    Article  ADS  Google Scholar 

  13. Wang, B.X., Wang, G.Z., Sang, T., Wang, L.L.: Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Sci. Rep. 7, 41373 (2017)

    Article  ADS  Google Scholar 

  14. Zhang, C., Huang, C., Pu, M., Song, J., Zhao, Z., Wu, X., Luo, X.: Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Sci. Rep. 7, 5652 (2017)

    Article  ADS  Google Scholar 

  15. Huang, H., Xia, H., Xie, W., Guo, Z., Li, H.: Design of a size-efficient tunable metamaterial absorber based on leaf-shaped cell at near-infrared regions. Results Phys. 9, 1310–1316 (2018)

    Article  ADS  Google Scholar 

  16. Yahiaoui, R., Strikwerda, A.C., Jepsen, P.U.: Terahertz plasmonic structure with enhanced sensing capabilities. IEEE Sens. J. 16, 2484 (2016)

    Article  ADS  Google Scholar 

  17. Hu, X., Xu, G., Wen, L., Wang, H., Zhao, Y., Zhang, Y., Cumming, D.R.S., Chen, Q.: Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev. 10, 962 (2016)

    Article  ADS  Google Scholar 

  18. Islam, M., Rao, S.J.M., Kumar, G., Pal, B.P., Chowdhury, D.R.: Role of resonance modes on terahertz metamaterials based thin film sensors. Sci. Rep. 7, 7355 (2017)

    Article  ADS  Google Scholar 

  19. Cong, L., Singh, R.: Sensing with THz metamaterial absorbers. arXiv (2014). arXiv:1408.3711.

  20. Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W., Singh, R.: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl. Phys. Lett. 106, 031107 (2015)

    Article  ADS  Google Scholar 

  21. Shen, F., Qin, J., Han, Z.: “Planar antenna array as a highly sensitive terahertz sensor. Appl. Opt. 58, 540 (2019)

    Article  ADS  Google Scholar 

  22. Meng, K., Park, S.J., Nurnett, A.D., Gill, T., Wood, C.D., Rosamond, M., Li, L.H., Chen, L., Bacon, D.R., Freeman, J.R., Dean, P., Ahn, Y.H., Linfield, E.H., Davies, A.G., Cunningham, J.E.: Increasing the sensitivity of terahertz split ring resonator metamaterials for dielectric sensing by localized substrate etching. Opt. Express. 27, 23164 (2019)

    Article  ADS  Google Scholar 

  23. Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W., Singh, R.: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl. Phys. Lett. 106(3), 26 (2015)

    Article  Google Scholar 

  24. Cong L., Singh R.: Sensing with THz metamaterial absorbers. (2014). arXiv: 1408.3711. [Online]. Available: http://arxiv.org/abs/1408.3711.

  25. SamySaadeldin, A., Farhat, M., Hameed, O., Elkaramany, E.M.A., Obayya, S.S.A.: Highly sensitive terahertz metamaterial sensor. IEEE Sensors J. 19(18), 7993–7999 (2019)

    Article  ADS  Google Scholar 

  26. Zou, H., Cheng, Y.: A thermally tunable terahertz three-dimensional perfect metamaterial absorber for temperature sensing application. Modern Phys. Lett. B 34(18), 2050207 (2020). https://doi.org/10.1142/S0217984920502073

    Article  ADS  Google Scholar 

  27. Shen, F., Qin, J., Han, Z.: Planar antenna array as a highly sensitive terahertz sensor. Appl. Opt. 2019(58), 540–544 (2019)

    Article  ADS  Google Scholar 

  28. Zhang, Y., Li, T., Zeng, B., Zhang, H., Lv, H., Huang, X., Zhang, W., Azad, A.K.: A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale 7, 12682–12688 (2015)

    Article  ADS  Google Scholar 

  29. Li, Y., Chen, X., Hu, F., Li, D., Teng, H., Rong, Q., Zhang, W., Han, J., Liang, H.: Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. J. Phys. D: Appl. Phys. 52, 095105 (2019)

    Article  ADS  Google Scholar 

  30. Wang, B.X., He, Y., Lou, P., Xing, W.: Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2020(2), 763–769 (2020)

    Article  ADS  Google Scholar 

  31. Yahiaoui, R., Tan, S., Cong, L., Singh, R., Yan, F., Zhang, W.: Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys. 118, 083103 (2015)

    Article  ADS  Google Scholar 

  32. Wang, B.-X., Huang, W.-Q., Wang, L.-L.: Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications. RSC Adv. 7(68), 42956–42963 (2017)

    Article  ADS  Google Scholar 

  33. Xiong, Z., Shang, L., Yang, J., Chen, L., Guo, J., Liu, Q., Danso, S.A., Li, G.: Terahertz sensor with resonance enhancement based on square split ring resonators. IEEE Access 9, 59211–59221 (2021)

    Article  Google Scholar 

  34. Saadeldin, A.S., Hameed, M.F.O., Elkaramany, E.M.A., Obayya, S.S.A.: Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. 19, 7993 (2019)

    Article  ADS  Google Scholar 

  35. Banerjee, S., Nath, U., Dutta, P., Jha, A.V., Appasani, B., Bizon, N.: A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing. Inventions 6, 78 (2021)

    Article  Google Scholar 

  36. Anwar, S., Ali, G., Maab, H., Khan, Q., Akhtar, S., Karim, S., Khan, M., Maqbool, M.: Six band terahertz absorption in metamaterial for designing optical filters and sensors. Optical Quantum Electron 54, 6 (2022). https://doi.org/10.1007/s11082-022-03821-6

    Article  Google Scholar 

  37. Tao, H., Strikwerda, A.C., Fan, K., Bingham, C.M., Padilla, W.J., Zhang, X., Averitt, R.D.: Terahertz metamaterials on free-standing highly-flexible polyimide substrates. Condensed Matter (2008). https://doi.org/10.1088/0022-3727/41/23/232004

    Article  Google Scholar 

Download references

Funding

No funding was involved to support the work/data of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Anwar.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not ethical approval is required because this work does not report any experiments on human subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, S. Dual-band detection based on metamaterial sensor at terahertz frequency. Opt Rev 30, 300–309 (2023). https://doi.org/10.1007/s10043-023-00808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00808-w

Keywords

Navigation