Skip to main content
Log in

On the study of bright, dark and optical wave structures for the coupled fractional nonlinear Schrödinger equations in plasma physics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The nonlinear Schrödinger equation (NLSE), one of the most fundamental physical models for understanding the fluctuations of optical soliton development, plays a significant role to demonstrate the dynamics of optical fibers. Therefore, the wave propagation in nonlinear dispersive medium is a subject of considerable interest due to the wide range of possibilities for ultrafast data processing and light pulses in communications. In this article, the coupled space-time fractional NLSE is investigated which is used to describe the non-relativistic quantum mechanical behaviour. A collection of comprehensive soliton structures are developed to study the dynamics of the governing model with the aid of some efficient analytical strategies. These solutions incorporate dark soliton and trigonometric function solutions, singular solition, dark singular solition plane wave, singular solition, opposite singular solition, smooth, bell shaped, periodic, bright, anti kink, singular bell and traveling wave with darkness. The presence of some attained solutions are flourish in 3D graphs with various fractional orders by using Mathematica. The results which we obtained reveal that the suggested approaches are more convenient and productive techniques to depict the dynamics of numerous complex wave structure in contemporary areas of science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availibility statement

Not applicable.

References

  • Adeyemo, O.D., Khalique, C.M.: Dynamical soliton wave structures of one-dimensional lie subalgebras via group-invariant solutions of a higher-dimensional soliton equation with various applications in ocean physics and mechatronics engineering. Commun. Appl. Math. Comput. 4(4), 1531–1582 (2022)

    MathSciNet  MATH  Google Scholar 

  • Akbar, M.A., Abdullah, F.A., Islam, M.T., Al Sharif, M.A., Osman, M.: New solutions of the soliton type of shallow water waves and superconductivity models. Results Phys. 44, 106180 (2023)

    Google Scholar 

  • Akbar, M.A., Wazwaz, A.-M., Mahmud, F., Baleanu, D., Roy, R., Barman, H.K., Mahmoud, W., Al Sharif, M.A., Osman, M.: Dynamical behavior of solitons of the perturbed nonlinear schrödinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 43, 106079 (2022)

    Google Scholar 

  • Ali, A., Seadawy, A.R., Lu, D.: Dispersive solitary wave soliton solutions of (2+1)-dimensional Boussineq dynamical equation via extended simple equation method. J. King Saud Univ. Sci. 31(4), 653–658 (2019a)

    Google Scholar 

  • Ali, M., Alquran, M., Jaradat, I.: Asymptotic-sequentially solution style for the generalized caputo time-fractional Newell–Whitehead–Segel system. Adv. Differ. Equ. 2019(1), 1–9 (2019b)

    MathSciNet  MATH  Google Scholar 

  • Almeida, R.: A caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Alquran, M., Jaradat, I.: Multiplicative of dual-waves generated upon increasing the phase velocity parameter embedded in dual-mode schrödinger with nonlinearity kerr laws. Nonlinear Dyn. 96, 115–121 (2019)

    MATH  Google Scholar 

  • Alquran, M., Jaradat, I., Yusuf, A., Sulaiman, T.A.: Heart-cusp and bell-shaped-cusp optical solitons for an extended two-mode version of the complex Hirota model: application in optics. Opt. Quant. Electron. 53, 1–13 (2021)

    Google Scholar 

  • Alshamrani, M., Zedan, H., Abu-Nawas, M.: Lie group method and fractional differential equations. J. Nonlinear Sci. Appl. 10(8), 4175–4180 (2017)

    MathSciNet  MATH  Google Scholar 

  • Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KDV equation through a reliable technique. Opt. Quant. Electron. 54(5), 309 (2022)

    Google Scholar 

  • Baskonus, H.M., Bulut, H., Sulaiman, T.A.: New complex hyperbolic structures to the Lonngren-wave equation by using Sine-Gordon expansion method. Appl., Math. Nonlinear Sci. 4(1), 129–138 (2019)

    MathSciNet  MATH  Google Scholar 

  • Bekir, A., Shehata, M.S., Zahran, E.H.: New perception of the exact solutions of the 3d-fractional Wazwaz–Benjamin–Bona–Mahony (3d-fwbbm) equation. J. Interdiscip. Math. 24(4), 867–880 (2021)

    Google Scholar 

  • Bilal, M., Younis, M., Ahmad, J., Younas, U., et al.: Investigation of new solitons and other solutions to the modified nonlinear schrödinger equation in ocean engineering. J. Ocean Eng. Sci. (2022)

  • Biswas, A., Ekici, M., Sonmezoglu, A., Belic, M.R.: Highly dispersive optical solitons with Kerr law nonlinearity by f-expansion. Optik 181, 1028–1038 (2019)

    ADS  Google Scholar 

  • Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics-informed neural networks: Where we are and what’s next. J. Sci. Comput. 92(3), 88 (2022)

    MathSciNet  MATH  Google Scholar 

  • Darvishi, M., Najafi, M., Wazwaz, A.-M.: Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions. Chaos Solitons Fractals 150, 111187 (2021)

    MATH  Google Scholar 

  • Ebadi, G., Mojaver, A., Vega-Guzman, J., Khan, K.R., Mahmood, M.F., Moraru, L., Biswas, A., Belic, M., et al.: Solitons in optical metamaterials by f-expansion scheme. Optoelectron. Adv. Mater.-Rapid Commun. 8(9–10), 828–832 (2014)

    Google Scholar 

  • Fibich, G.: The nonlinear Schrödinger equation, Vol. 192, Springer (2015)

  • Fu, L., Li, J., Yang, H., Dong, H., Han, X.: Optical solitons in birefringent fibers with the generalized coupled space-time fractional non-linear Schrödinger equations. Front. Phys. 11, 38 (2023)

    Google Scholar 

  • Gurefe, Y.: The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative. Revista Mexicana de física 66(6), 771–781 (2020)

    MathSciNet  Google Scholar 

  • Hajiketabi, M., Abbasbandy, S., Casas, F.: The lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin–Bona–Mahony-burgers equation in arbitrary domains. Appl. Math. Comput. 321, 223–243 (2018)

    MathSciNet  MATH  Google Scholar 

  • Hussain, A., Junaid-U-Rehman, M., Jabeen, F., Khan, I.: Optical solitons of NLS-type differential equations by extended direct algebraic method. Int. J. Geomet. Methods Modern Phys. 19(05), 2250075 (2022)

    ADS  MathSciNet  Google Scholar 

  • Islam, M.T., Akter, M.A., Ryehan, S., Gómez-Aguilar, J., Akbar, M.A.: A variety of solitons on the oceans exposed by the kadomtsev petviashvili-modified equal width equation adopting different techniques. J. Ocean Eng. Sci. (2022a)

  • Islam, M.T., Akter, M.A., Gómez-Aguilar, J., Akbar, M.A., Perez-Careta, E.: Novel optical solitons and other wave structures of solutions to the fractional order nonlinear Schrodinger equations. Opt. Quant. Electron. 54(8), 520 (2022b)

    Google Scholar 

  • Islam, M.T., Akbar, M.A., Gómez-Aguilar, J., Bonyah, E., Fernandez-Anaya, G.: Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations. J. Ocean Eng. Sci. 7(6), 528–535 (2022c)

    Google Scholar 

  • Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear Boiti–Leon–Manna–Pempinelli model (2023a)

  • Islam, M.T., Ryehan, S., Abdullah, F.A., Gómez-Aguilar, J.: The effect of Brownian motion and noise strength on solutions of stochastic Bogoyavlenskii model alongside conformable fractional derivative. Optik 287, 171140 (2023b)

    ADS  Google Scholar 

  • Islam, M.T., Akter, M.A., Gomez-Aguilar, J., Akbar, M.A., Pérez-Careta, E.: Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques. J. Nonlinear Opt. Phys. Mater. 32, 2350037 (2023c)

    ADS  Google Scholar 

  • Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8(7), 1127 (2020)

    Google Scholar 

  • Jaradat, I., Alquran, M., Momani, S., Biswas, A.: Dark and singular optical solutions with dual-mode nonlinear Schrödinger’s equation and Kerr-law nonlinearity. Optik 172, 822–825 (2018)

    ADS  Google Scholar 

  • Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–1376 (2006)

    MathSciNet  MATH  Google Scholar 

  • Kumar, D., Hosseini, K., Samadani, F.: The Sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik 149, 439–446 (2017)

    ADS  Google Scholar 

  • Kurt, A., Tozar, A., Tasbozan, O.: Applying the new extended direct algebraic method to solve the equation of obliquely interacting waves in shallow waters. J. Ocean Univ. China 19, 772–780 (2020)

    ADS  Google Scholar 

  • Lenells, J., Fokas, A.: The unified method: III. Nonlinearizable problems on the interval. J. Phys. A: Math. Theor. 45(19), 195203 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • Lu, D., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017)

    ADS  Google Scholar 

  • Lü, D.: Jacobi elliptic function solutions for two variant Boussinesq equations. Chaos Solitons Fractals 24(5), 1373–1385 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ma, W.-X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Non-Linear Mech. 31(3), 329–338 (1996)

    MathSciNet  MATH  Google Scholar 

  • Ma, W.-X., Lee, J.-H.: A transformed rational function method and exact solutions to the 3+ 1 dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 42(3), 1356–1363 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Mahmood, I., Hussain, E., Mahmood, A., Anjum, A., Shah, S.A.A.: Optical soliton propagation in the Benjamin–Bona–Mahoney–Peregrine equation using two analytical schemes. Optik 287, 171099 (2023)

    ADS  Google Scholar 

  • Munawar, M., Jhangeer, A., Pervaiz, A., Ibraheem, F.: New general extended direct algebraic approach for optical solitons of Biswas-Arshed equation through birefringent fibers. Optik 228, 165790 (2021)

    ADS  Google Scholar 

  • Naher, H., Abdullah, F.A.: New approach of (g/g)-expansion method and new approach of generalized (g/g)-expansion method for nonlinear evolution equation. AIP Adv. 3(3), 032116 (2013)

    ADS  Google Scholar 

  • Osman, M., Korkmaz, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q.: The unified method for conformable time fractional Schro’dinger equation with perturbation terms. Chin. J. Phys. 56(5), 2500–2506 (2018)

    Google Scholar 

  • Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 340 (1999)

    MATH  Google Scholar 

  • Rehman, H.U., Ullah, N., Imran, M.: Optical solitons of Biswas–Arshed equation in birefringent fibers using extended direct algebraic method. Optik 226, 165378 (2021)

    ADS  Google Scholar 

  • Rezazadeh, H., Sabi’u, J., Jena, R.M., Chakraverty, S.: New optical soliton solutions for Triki–Biswas model by new extended direct algebraic method. Mod. Phys. Lett. B 34(supp01), 2150023 (2020)

    ADS  MathSciNet  Google Scholar 

  • Rizvi, S.T., Seadawy, A.R., Farah, N., Ahmad, S.: Controlling optical soliton solutions for higher order Boussinesq equation using bilinear form. Opt. Quant. Electron. 55(10), 865 (2023a)

    Google Scholar 

  • Rizvi, S.T., Seadawy, A.R., Nimra, X., Ahmad, A.: Study of lump, rogue, multi, m shaped, periodic cross kink, breather lump, kink-cross rational waves and other interactions to the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Opt. Quant. Electron. 55(9), 813 (2023b)

    Google Scholar 

  • Saifullah, S., Ahmad, S., Alyami, M.A., Inc, M.: Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed KDV equation using Hirota-Bilinear approach. Phys. Lett. A 454, 128503 (2022)

    MathSciNet  MATH  Google Scholar 

  • Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049 (1926)

    ADS  Google Scholar 

  • Seadawy, A.R., Cheemaa, N.: Propagation of nonlinear complex waves for the coupled nonlinear Schrödinger equations in two core optical fibers. Phys. A 529, 121330 (2019)

    MathSciNet  MATH  Google Scholar 

  • Seadawy, A.R., Cheemaa, N.: Improved perturbed nonlinear Schrödinger dynamical equation with type of Kerr law nonlinearity with optical soliton solutions. Phys. Scr. 95(6), 065209 (2020)

    ADS  Google Scholar 

  • Seadawy, A.R., Cheemaa, N., Biswas, A.: Optical dromions and domain walls in (2+1)-dimensional coupled system. Optik 227, 165669 (2021)

    ADS  Google Scholar 

  • Tariq, K.U., Tala-Tebue, E., Rezazadeh, H., Younis, M., Bekir, A., Chu, Y.-M.: Construction of new exact solutions of the resonant fractional NLS equation with the extended fan sub-equation method. J. King Saud Univ.-Sci. 33(8), 101643 (2021)

    Google Scholar 

  • Uddin, M.H., Zaman, U., Arefin, M.A., Akbar, M.A.: Nonlinear dispersive wave propagation pattern in optical fiber system. Chaos Solitons Fractals 164, 112596 (2022)

    MathSciNet  MATH  Google Scholar 

  • Wang, B.-H., Lu, P.-H., Dai, C.-Q., Chen, Y.-X.: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation. Results Phys. 17, 103036 (2020)

    Google Scholar 

  • Wu, G.-Z., Yu, L.-J., Wang, Y.-Y.: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation. Optik 207, 164405 (2020)

    ADS  Google Scholar 

  • Yepez-Martinez, H., Gómez-Aguilar, J.: Optical solitons solution of resonance nonlinear Schrödinger type equation with Atangana’s-conformable derivative using sub-equation method. Waves Random Complex Med 31(3), 573–596 (2021)

    ADS  MATH  Google Scholar 

  • Yesmakhanova, K., Shaikhova, G., Bekova, G., Myrzakulov, R.: Darboux transformation and soliton solution for the (2+1)-dimensional complex modified Korteweg-de vries equations. In: Journal of Physics: Conference Series, Vol. 936, IOP Publishing, p. 012045 (2017)

  • Yin, Y.-H., Lü, X., Ma, W.-X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Google Scholar 

  • Yokuş, A., Durur, H., Duran, S., Islam, M.T.: Ample felicitous wave structures for fractional foam drainage equation modeling for fluid-flow mechanism. Comput. Appl. Math. 41(4), 174 (2022)

    MathSciNet  MATH  Google Scholar 

  • Yomba, E.: The modified extended fan sub-equation method and its application to the (2+1)-dimensional Broer–Kaup–Kupershmidt equation. Chaos Solitons Fractals 27(1), 187–196 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Younas, U., Bilal, M., Ren, J.: Propagation of the pure-cubic optical solitons and stability analysis in the absence of chromatic dispersion. Opt. Quant. Electron. 53, 1–25 (2021)

    Google Scholar 

  • Yu, F., Feng, S.: Explicit solution and Darboux transformation for a new discrete integrable soliton hierarchy with 4\(\times\) 4 lax pairs. Math. Methods Appl. Sci. 40(15), 5515–5525 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Zaman, U., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of soliton solutions to the couple type fractional-order nonlinear evolution equations utilizing a novel technique. Alex. Eng. J. 61(12), 11947–11958 (2022a)

    Google Scholar 

  • Zaman, U., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analyzing numerous travelling wave behavior to the fractional-order nonlinear phi-4 and Allen–Cahn equations throughout a novel technique. Results Phys. 37, 105486 (2022b)

    Google Scholar 

  • Zaman, U., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Stable and effective traveling wave solutions to the non-linear fractional gardner and Zakharov–Kuznetsov–Benjamin–Bona–Mahony equations. Partial Differ. Equ. Appl. Math. 7, 100509 (2023a)

    Google Scholar 

  • Zaman, U., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Study of the soliton propagation of the fractional nonlinear type evolution equation through a novel technique. PLoS ONE 18(5), e0285178 (2023b)

    Google Scholar 

  • Zayed, E.M., Gepreel, K.A.: Some applications of the g g-expansion method to non-linear partial differential equations. Appl. Math. Comput. 212(1), 1–13 (2009)

    MathSciNet  MATH  Google Scholar 

  • Zhou, Y., Ma, W.-X.: Complexiton solutions to soliton equations by the Hirota method. J. Math. Phys. 58(10), 101511 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Zulfiqar, A., Ahmad, J.: Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method. Results Phys. 19, 103476 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciations to: The Hubei University of Automotive Technology, P. R. China in the form of a start-up research grant (BK202212). The Higher Education of Russian Federation, Ural Federal University Program of Development within the Priority-2030 Program, Project: 4.38 (FEUZ 2023-0014).

Author information

Authors and Affiliations

Authors

Contributions

FB: Funding, visualization, software, review and editing. KUT: Methodology, software, resources. MI: Conceptualization, supervision, project administration. MA: Funding, scientific computing and validation. MZ: Formal analysis, investigation, writing original draft.

Corresponding authors

Correspondence to Kalim U. Tariq or Mustafa Inc.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badshah, F., Tariq, K.U., Inc, M. et al. On the study of bright, dark and optical wave structures for the coupled fractional nonlinear Schrödinger equations in plasma physics. Opt Quant Electron 55, 1170 (2023). https://doi.org/10.1007/s11082-023-05434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05434-z

Keywords

Navigation