Skip to main content
Log in

Dynamical behavior for the approximate solutions and different wave profiles nonlinear fractional generalised pochhammer-chree equation in mathematical physics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, We have developed a variety of new approximate solutions for the nonlinear fractional generalized Pochhammer-Chree equation (FGPCEs) using the fractional homotopy perturbation transform method via the Caputo-Fabrizio fractional derivative(CFFD) of order \(\alpha \) where \(\alpha \in (1, 2].\) via Laplace transform technique.we investigate all concerned wave models that have been used in the examination for the propagation of harmonic waves in a cylindrical rod and several problems in fluid mechanics and wave theory in physics. Banach’s fixed point hypothesis is tested for governing the fractional-order model in order to establish the existence and uniqueness of the achieved solution. We considered the model in terms of arbitrary order with three cases and introduced corresponding numerical simulations to demonstrate and validate the effectiveness of the proposed algorithm. By assigning appropriate values to free parameters, dynamical wave structures of some approximate solutions are graphically demonstrated using 2D and 3D Fig. This method can also be used to approximate the solutions of other well-known equations in engineering physics, quantum field, and other applied sciences. Furthermore, various simulations are used to demonstrate the physical behaviors of the acquired solution with respect to fractional integer order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data are included in the paper

References

  • Achab, A.E.: On the integrability of the generalized Pochhammer-Chree (PC) equations. Phy. A. Stat. Mech. Appl. 545(1), 1–16 (2019)

    Google Scholar 

  • Akinyemi, L., Veeresha, P., Ajibola, S.O.: Numerical simulation for coupled nonlinear Schrödinger-Korteweg-de Vries and Maccari systems of equations. Modern Physics Letters B 35(20), 2150339 (2021)

    ADS  Google Scholar 

  • Akinyemi, L., Veeresha, P., Senol, M., Rezazadeh, H.: An efficient technique for generalized conformable Pochhammer-Chree models of longitudinal wave propagation of elastic rod. Ind. J. Phy. 1-10, (2022)

  • Ali, K.: The Existence and Uniqueness of Solution for Fractional Newell-Whitehead-Segel Equation Within Caputo-Fabrizio Fractional Operator. Appl. Appl. Math. 16(2), 894–909 (2021)

    MathSciNet  MATH  Google Scholar 

  • Ali, A., Seadawy, A.R., Dumitru, B.: Propagation of harmonic waves in a cylindrical rod via generalized Pochhammer-Chree dynamical wave equation. Res. Phy. 17, 1–7 (2020)

    Google Scholar 

  • Al-Smadi, M., Djeddi, N., Momani, S., Al-Omari, S., Araci, S.: An attractive numerical algorithm for solving nonlinear Caputo-Fabrizio fractional Abel differential equation in a Hilbert space. Adv. Diff. Equ. 271, 1–18 (2021)

    MathSciNet  MATH  Google Scholar 

  • Asghari, Y., Eslami, M., Rezazadeh, H.: Soliton solutions for the time- fractional nonlinear differential-difference equation with conformable derivatives in the ferroelectric materials. Opt Quant Electron 55, 289 (2023)

    Google Scholar 

  • Asghari, Y., Eslami, M., Rezazadeh, H.: Exact solutions to the conformable time-fractional discretized mKdv lattice system using the fractional transformation method. Opt Quant Electron 55, 318 (2023)

    Google Scholar 

  • Asjad, M.I., Inc, M., Faridi, W.A., et al.: Optical solitonic structures with singular and non-singular kernel for a nonlinear fractional model in quantum mechanics. Opt Quant Electron 55, 219 (2023)

    Google Scholar 

  • Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric caputo-fabrizio fractional integro-differential equations. Bound Value Prob 1, 145–53 (2017)

    MathSciNet  MATH  Google Scholar 

  • Baskonus, H.M., Mahmud, A.A., Muhamad, K.A., Tanriverdi, T.: A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial differential equation. Math. Meth. Appl. Sci. (2022). https://doi.org/10.1002/mma.8259

    Article  MathSciNet  Google Scholar 

  • Baskonus, H. M., Senel, M., Kumar, A., Yel, G., Senel, B., Gao, W.: On the Wave Properties of the Conformable Generalized Bogoyavlensky-Konopelchenko Equation. Hand. Fract. Cal. Eng. Sci. 103-119 ( 2022)

  • Caputo, M.: Elasticita Dissipazione. Zani-Chelli (1969)

    Google Scholar 

  • Chen, Q., Baskonus, H.M., Gao, W., Ilhan, E.: Soliton theory and modulation instability analysis: The Ivancevic option pricing model in economy. Alex. Eng. J. 61(10), 7843–7851 (2022)

    Google Scholar 

  • Ciancio, A., Yel, G., Yel, Kumar, A., Baskonus, H.M.: On the complex mixed dark-bright wave distributions to some conformable nonlinear integrable models. Fract 30(1), 2240018 (2022)

    ADS  MATH  Google Scholar 

  • Clarkson, P.A., LeVeque, R.J., Saxton, R.: Solitary wave interactions in elastic rods. Stud. Appl. Math. 75, 95–122 (1986)

    MathSciNet  MATH  Google Scholar 

  • Deepika, S., Veeresha, P.: Dynamics of chaotic waterwheel model with the asymmetric flow within the frame of Caputo fractional operator. Chaos, Solitons & Fractals 169, 113298 (2023)

    MathSciNet  Google Scholar 

  • Esin, I., Veeresha, P., Haci, M.B.: Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method. Chaos, Solitons & Fractals 152, 111347 (2021)

    MATH  Google Scholar 

  • Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M.: Regarding new numerical results for the dynamical model of romantic relationships with fractional derivative. Fract. 30(1), 1–11 (2022)

    MATH  Google Scholar 

  • Hawagfeh, N.S., Kaya, D.: Series Solution to the Pochhammer-Chree Equation and Comparison with Exact Solutions. Comput. Math. Appl. 47, 1915–1920 (2004)

    MathSciNet  MATH  Google Scholar 

  • He, J.H.: Homotopy perturbation technique. Comput. Meth. Appl. Mech. Eng. 178(3–4), 257–262 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  • Iyanda, Falade Kazeem, Rezazadeh, Hadi, Inc, Mustafa, Akguul, Ali, Bashiru, Ibrahim Mujitaba, Hafeez, Muhammad Bilal, Krawczuk, Marek: Numerical simulation of temperature distribution of heat flow on reservoir tanks connected in a series. Alexandria Engineering Journal 66, 785–795 (2023)

    Google Scholar 

  • Kala, B.S., Rawat, M.S., Kumar, A.: Numerical analysis of non-Darcy MHD flow of a Carreau fluid over an exponentially stretching/shrinking sheet in a porous medium. Int. J. Sci. Res. Math. Stat. Sci. 6(2), 295–303 (2019)

    Google Scholar 

  • kumar, A., Prakash, A., Baskonus, H. M.: The epidemic COVID-19 model via Caputo-Fabrizio fractional operator. Wav. Ran. Comp. Med. 1-15 (2022). https://doi.org/10.1080/17455030.2022.2075954

  • Lanre, A., Udoh, A., Pundikal, V.: Hadi Rezazadehd, Mustafa Inc Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation, Journal of Ocean Engineering and Science x(x), 1-10 (2022)

  • Li, J., Zhang, L.: Bifurcation of traveling wave solution of the generalized Pochhammer-Chree (PC) equation. Chaos Soliton. Fract. 14, 581–93 (2002)

    ADS  MATH  Google Scholar 

  • Li, B., Chen, Y., Zhang, H.: Travelling Wave Solutionsfor Generalized Pochhammer-Chree Equations. Zeit. fur. Natu. sch. A 57(a), 874–882 (2002)

    ADS  Google Scholar 

  • Malik, S., Hashemi, M.S., Kumar, S., et al.: Application of new Kudryashov method to various nonlinear partial differential equations. Opt Quant Electron 55, 8 (2023)

    Google Scholar 

  • Maraaba, T.A., Jarad, F., Baleanu, D.: Sci. China. Ser. A. Math. 51(10), 1775–1786 (2008)

  • Miller, K.S., Ross, B.: An introduction to fractional calculus and fractional differential equations. A Wiley, New York (1993)

    MATH  Google Scholar 

  • Mohebbi, A.: Solitary wave solutions of the nonlinear generalized Pochhammer-Chree and regularized long wave equations. Nonl. Dyn 70, 2463–2474 (2012)

    MathSciNet  MATH  Google Scholar 

  • Prakash, A., Kaur, H.: Numerical simulation of coupled fractional-order Whitham-Broer-Kaup equations arising in shallow water with Atangana-Baleanu derivative. Math. Meth. Appl. Sci. 1-20 (2022)

  • Prakash, A., Kumar, A., Baskonus, H.M., Kumar, A.: Numerical analysis of nonlinear fractional Klein-Fock-Gordon equation arising in quantum field theory via Caputo-Fabrizio fractional operator. Math. Sci. 15, 269 (2021)

    MathSciNet  MATH  Google Scholar 

  • Ramapura, N., Premakumari, Chandrali, B., Veeresha, P., Lanre, A.: A Fractional Atmospheric Circulation System under the Influence of a Sliding Mode Controller. Symmetry 14, 2618 (2022)

    Google Scholar 

  • Renu, K., Kumar, A. , Kumar, A., Kumar, J.: Effect Of Transverse Hydromagnetic And Media Permeability On Mixed Convective Flow In A Channel Filled By Porous Medium. Spec. Top. Rev. Por. Med. I. J. x(x), 1-23 (2021)

  • Runzhang, X., Yacheng, L.: Global existence and blow-up of solutions for generalized Pochhammer-Chree equations. Acta. Math. Sci. 30(5), 1793–1807 (2010)

    MathSciNet  MATH  Google Scholar 

  • Saxton, R.: Existence of solutions for a finite nonlinearly hyperelastic rod. J. Math. Anal. Appl 105, 59–75 (1985)

    MathSciNet  MATH  Google Scholar 

  • Seadawy, A.R., Rehman, S.U., Younis, M., Rizvi, S.T.R., Althobaiti, S., Makhlou, M.M.: Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation. Phys. Scr. 96, 1–15 (2021)

    Google Scholar 

  • Toprakseven, S.: The Existence and Uniqueness of Initial-Boundary Value Problems of the Fractional Caputo-Fabrizio Differential Equations. Univ. J. Math. Appl. 2(2), 100–106 (2021)

    Google Scholar 

  • Veeresha, P.: A numerical approach to the coupled atmospheric ocean model using a fractional operator. Math. Model. Nume. Simul. Appl. 1(1), 1–10 (2021)

    MathSciNet  Google Scholar 

  • Veeresha, P.: The efficient fractional order based approach to analyze chemical reaction associated with pattern formation. Chaos, Solitons & Fractals 165(2), 112862 (2022)

    MathSciNet  MATH  Google Scholar 

  • Veeresha, P., Prakasha, D.G., Baleanu, D.: An efficient numerical technique for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equation. Mathhematics. 7(2), 1–17 (2019)

    Google Scholar 

  • Veeresha, P., Malagi, N.S., Prakasha, D.G., Baskonus, H.M.: An efficient technique to analyze the fractional model of vector-borne diseases. Phy. Scr. 97(5), 054004 (2022)

    ADS  Google Scholar 

  • Veeresha, P., Prakasha, D.G., Ravichandran, C., Akinyemi, L., Nisar, K.S.: A numerical approach to study generalised coupled fractional Ramani equations. I. J. Mod. Phy. B. 36(5), 2250047 (2022)

    ADS  Google Scholar 

  • Veeresha, P., Ilhan, E., Prakasha, D.G., Baskonus, H.M., Gao, W.: A new numerical investigation of fractional order susceptible-infected-recovered epidemic model of childhood disease. Alex. Eng. J. 61(2), 1747–1756 (2022)

    Google Scholar 

  • Wazwaz, A.M.: The tanh-coth and the sine-cosine methods for kinks, solitons, and periodic solutions for the Pochhammer-Chree equations. Appl. Math. Comput. 195(1), 24–33 (2008)

    MathSciNet  MATH  Google Scholar 

  • Wei, G., Pundikal, V., Carlo, C., Chandrali, B., Haci, M.B.: Modified Predictor-Corrector Method for the Numerical Solution of a Fractional-Order SIR Model with 2019-nCoV. Fractal Fract. 6(92), 1–13 (2022)

    Google Scholar 

  • WuFulai, X., Deng, C.: Hyers-Ulam stability and existence of solutions for weighted Caputo-Fabrizio fractional differential equations. Chaos Solitons Fract. 5, 1–11 (2020)

    Google Scholar 

  • Yan, L., Yel, G., Kumar, A., Baskonus, H.M., Gao, W.: Newly Developed Analytical Scheme and Its Applications to the Some Nonlinear Partial Differential Equations with the Conformable Derivative. Frac. Fract. 5(4) (2021)

  • Yan, L., Kumar, A., Guirao, J.L.G., Baskonus, H.M., Gao, W.: Deeper properties of the nonlinear Phi-four and Gross-Pitaevskii equations arising mathematical physics. Mod. Phy. Lett. B. 36(4), 215 (2022). https://doi.org/10.1142/S0217984921505679

    Article  MathSciNet  Google Scholar 

  • Zhang, W., Ma, W.: Explicit solitary wave solution of the generalized Pochhammer-Chree (PC) equation. Appl. Math. Mech. 20, 666–74 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

No funding available

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Competing financial interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Competing Interest

There is not any conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Fartyal, P. Dynamical behavior for the approximate solutions and different wave profiles nonlinear fractional generalised pochhammer-chree equation in mathematical physics. Opt Quant Electron 55, 1128 (2023). https://doi.org/10.1007/s11082-023-05416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05416-1

Keywords

Navigation