Skip to main content
Log in

Performance of density functional theory for calculating the electronic, static, and dynamic nonlinear optical properties of asymmetric (3E,5E)-3,5-dibenzylidene-piperidin-4-one derivatives

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The electronic charge delocalization in organic compounds with a donor–acceptor system allows them to exhibit excellent nonlinear optical characteristics. From the perspective of conjugation, mono-carbonyl curcuminoids also have a fascinating skeleton. Interesting chemical structures of the (3E,5E)-3,5-dibenzylidene-piperidin-4-one derivatives motivate us to perform density functional theory-based studies. In investigating the derivates, geometric parameters, highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energies, and nonlinear optical (NLO) parameters calculations were performed using B3LYP/6-311++G(d,p) level of theory. Root mean square error (RMSE) calculations revealed excellent agreement between calculated and experimental parameters. The molecular stability of chalcone derivatives was investigated using molecular electrostatic potential analyses, which were also used to gain information regarding atomic charges. Calculated HOMO–LUMO energies showed that charge transfer interactions occur within the molecules. The HOMO and LUMO energies were used to compute hardness, softness, ionization potential, and electrophilicity. The \(\lambda_{max}\) values of the investigated compounds are greater than that of the reference compound. Among all other derivatives, B4 has the highest amplitude of static linear polarizability (\({\upalpha }_{tot}\)) and first total hyperpolarizability (\({\upbeta }_{tot}\)) values at 101.15 and 554.11 × 10–30 esu, respectively. Compelling NLO findings reveal that bis-chalcones-based derivatives could substantially contribute to NLO technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas, H., Shkir, M., AlFaify, S.: Density functional study of spectroscopy, electronic structure, linear and nonlinear optical properties of l-proline lithium chloride and l-proline lithium bromide monohydrate: for laser applications. Arab. J. Chem. 12, 2336–2346 (2019). https://doi.org/10.1016/j.arabjc.2015.02.011

    Article  Google Scholar 

  • Adant, C., Dupuis, M., Bredas, J.L.: Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects. Int. J. Quantum Chem. 56, 497–507 (1995). https://doi.org/10.1002/qua.560560853

    Article  Google Scholar 

  • Amiri, S.S., Makarem, S., Ahmar, H., Ashenagar, S.: Theoretical studies and spectroscopic characterization of novel 4-methyl-5-((5-phenyl-1, 3, 4-oxadiazol-2-yl) thio) benzene-1, 2-diol. J. Mol. Struct. 1119, 18–24 (2016)

    Article  ADS  Google Scholar 

  • Ammasi, A., Iruthayaraj, R., Munusamy, A.P., Shkir, M.: Molecular engineering on D–π–A organic dyes with flavone-based different acceptors for highly efficient dye-sensitized solar cells using experimental and computational study. J. Mol. Model. 29, 45 (2023a). https://doi.org/10.1007/s00894-023-05445-3

    Article  Google Scholar 

  • Ammasi, A., Iruthayaraj, R., Munusamy, A.P., Shkir, M., Vellingiri, B., Minnam Reddy, V.R., Kim, W.K.: Molecular screening of different π-linker-based organic dyes for optoelectronic applications: quantum chemical study. J. Electron. Mater. 52, 3774–3785 (2023b). https://doi.org/10.1007/s11664-023-10338-5

    Article  ADS  Google Scholar 

  • Andrews, D.L., Bradshaw, D.S., Coles, M.M.: Perturbation theory and the two-level approximation: a corollary and critique. Chem. Phys. Lett. 503, 153–156 (2011). https://doi.org/10.1016/j.cplett.2010.12.055

    Article  ADS  Google Scholar 

  • Arunkumar, A., Anbarasan, P.M.: Optoelectronic properties of a simple metal-free organic sensitizer with different spacer groups: quantum chemical assessments. J. Electron. Mater. 48, 1522–1530 (2019). https://doi.org/10.1007/s11664-018-06912-x

    Article  ADS  Google Scholar 

  • Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998). https://doi.org/10.1021/jp9716997

    Article  Google Scholar 

  • Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  Google Scholar 

  • Bernstein, J., Davis, R.E., Shimoni, L., Chang, N.-L.: Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. EngL. 34, 1555–1573 (1995). https://doi.org/10.1002/anie.199515551

    Article  Google Scholar 

  • Bosshard, C., Hulliger, J., Florsheimer, M., Gunter, P.: Organic Nonlinear Optical Materials. CRC Press, Boca Raton (2001)

    Google Scholar 

  • Cai, Z.-B., Bai, L., Pan, Y.-L., Ma, F.-F., Li, S.-L., Tian, Y.-P.: Multipolar symmetric and asymmetric N–heterocyclic compounds with efficient two−photon absorption. J. Photochem. Photobiol. A Chem. 346, 194–205 (2017)

    Article  Google Scholar 

  • Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  Google Scholar 

  • Champagne, B., Kirtman, B.: Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull π-conjugated systems. J. Chem. Phys. (2006). https://doi.org/10.1063/1.2206181

    Article  Google Scholar 

  • Chattaraj, P.K., Maiti, B., Sarkar, U.: Philicity: a unified treatment of chemical reactivity and selectivity. J. Phys. Chem. A 107, 4973–4975 (2003)

    Article  Google Scholar 

  • Chen, R., Xu, K., Wang, G., Zhang, Z., Cao, L., Teng, B.: Theoretical and experimental investigation of a pyridinium-based NLO crystal 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium 3,4-dimethoxysulfonate. Optik (stuttg). 257, 168830 (2022). https://doi.org/10.1016/j.ijleo.2022.168830

    Article  ADS  Google Scholar 

  • Chidan Kumar, C.S., Quah, C.K., Balachandran, V., Fun, H.-K., Asiri, A.M., Chandraju, S., Karabacak, M.: Synthesis, single crystal structure, spectroscopic characterization and molecular properties of (2E)-3-(2,6-dichlorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one. J. Mol. Struct. 1116, 135–145 (2016). https://doi.org/10.1016/j.molstruc.2016.02.089

    Article  ADS  Google Scholar 

  • Christodoulides, D.N., Khoo, I.C., Salamo, G.J., Stegeman, G.I., Van Stryland, E.W.: Nonlinear refraction and absorption: mechanisms and magnitudes. Adv. Opt. Photonics. 2, 60–200 (2010)

    Article  ADS  Google Scholar 

  • Cigan, M., Donovalová, J., Szöcs, V., Gaspar, J., Jakusová, K., Gaplovsky, A.: 7-(Dimethylamino) coumarin-3-carbaldehyde and its phenylsemicarbazone: TICT excited state modulation, fluorescent H-aggregates, and preferential solvation. J. Phys. Chem. A 117, 4870–4883 (2013)

    Article  Google Scholar 

  • Cisse, L., Djande, A., Capo-Chichi, M., Delatre, F., Saba, A., Tine, A., Aaron, J.-J.: Revisiting the photophysical properties and excited singlet-state dipole moments of several coumarin derivatives. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 79, 428–436 (2011)

    Article  ADS  Google Scholar 

  • Cossi, M., Rega, N., Scalmani, G., Barone, V.: Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003). https://doi.org/10.1002/jcc.10189

    Article  Google Scholar 

  • Duan, Y., Geng, Y., Li, H., Jin, J., Wu, Y., Su, Z.: Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. J. Comput. Chem. 34, 1611–1619 (2013)

    Article  Google Scholar 

  • Erickson, M.A., Beels, M.T., Biaggio, I.: Optimum conjugation length in donor–acceptor molecules for third-order nonlinear optics. JOSA B 33, E130–E142 (2016)

    Article  ADS  Google Scholar 

  • Eryanti, Y., Herlina, T., Zamri, A., Shiono, Y., Awang, K., Halim, S.N.A., Supratman, U.: N-benzyl-(3E,5E)-3,5-bis(2-hydroxybenzylidene)-4-piperidone. Molbank 2015, 5–8 (2015). https://doi.org/10.3390/M852

    Article  Google Scholar 

  • Fejer, M.M.: Nonlinear optical frequency conversion. Phys. Today 47, 25–33 (1994)

    Article  ADS  Google Scholar 

  • Feng, L., Maddox, M.M., Alam, M.Z., Tsutsumi, L.S., Narula, G., Bruhn, D.F., Wu, X., Sandhaus, S., Lee, R.B., Simmons, C.J.: Synthesis, structure–activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives. J. Med. Chem. 57, 8398–8420 (2014)

    Article  Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian-09 Revision D.01. Gaussian, Inc., Wallingford (2013)

    Google Scholar 

  • Gandhimathi, R., Vinitha, G., Dhanasekaran, R.: Effect of substituent position on the properties of chalcone isomer single crystals. J. Cryst. Process Technol. 3, 148–155 (2013)

    Google Scholar 

  • Garmire, E.: Nonlinear optics in daily life. Opt. Express. 21, 30532–30544 (2013)

    Article  ADS  Google Scholar 

  • Ghouili, A., Dusek, M., Petricek, V., Ayed, T.B., Hassen, R.B.: Synthesis, crystal structure and spectral characteristics of highly fluorescent chalcone-based coumarin in solution and in polymer matrix. J. Phys. Chem. Solids. 75, 188–193 (2014). https://doi.org/10.1016/j.jpcs.2013.09.011

    Article  ADS  Google Scholar 

  • Gunasekaran, S., Balaji, R.A., Kumeresan, S., Anand, G., Srinivasan, S.: Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-methoxytryptamine. Can. J. Anal. Sci. Spectrosc. 53, 149–162 (2008)

    Google Scholar 

  • Hagar, M., Ahmed, H.A., Aljohani, G., Alhaddad, O.A.: Investigation of some antiviral N-heterocycles as COVID 19 drug: molecular docking and DFT calculations. Int. J. Mol. Sci. 21, 3922 (2020). https://doi.org/10.3390/ijms21113922

    Article  Google Scholar 

  • Hrobarik, P., Sigmundova, I., Zahradnik, P., Kasak, P., Arion, V., Franz, E., Clays, K.: Molecular engineering of benzothiazolium salts with large quadratic hyperpolarizabilities: can auxiliary electron-withdrawing groups enhance nonlinear optical responses? J. Phys. Chem. C 114, 22289–22302 (2010)

    Article  Google Scholar 

  • Hussein, H.A., Fadhil, G.F.: Theoretical Investigation of para amino-dichloro chalcone isomers. Part II: a DFT structure-stability study of the FMO and NLO properties. ACS Omega 8, 4937–4953 (2023). https://doi.org/10.1021/acsomega.2c07148

    Article  Google Scholar 

  • Hutama, A.S., Huang, H., Kurniawan, Y.S.: Investigation of the chemical and optical properties of halogen-substituted N-methyl-4-piperidone curcumin analogs by density functional theory calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 221, 117152 (2019). https://doi.org/10.1016/j.saa.2019.117152

    Article  Google Scholar 

  • Irfan, A., Al-Sehemi, A.G., Assiri, M.A., Mumtaz, M.W.: Exploring the electronic, optical and charge transfer properties of acene-based organic semiconductor materials. Bull. Mater. Sci. 42, 1–7 (2019a)

    Article  Google Scholar 

  • Irfan, A., Chaudhry, A.R., Al-Sehemi, A.G., Assiri, M.A., Hussain, A.: Charge carrier and optoelectronic properties of phenylimidazo [1, 5-a] pyridine-containing small molecules at molecular and solid-state bulk scales. Comput. Mater. Sci. 170, 109179 (2019b)

    Article  Google Scholar 

  • Ito, M., Mikami, N.: Multiphoton spectroscopy. Appl. Spectrosc. Rev. 16, 299–352 (1980)

    Article  ADS  Google Scholar 

  • Ivanova, B.B., Spiteller, M.: Noncentrosymmetric crystals with marked nonlinear optical properties. J. Phys. Chem. A 114, 5099–5103 (2010)

    Article  Google Scholar 

  • Kuebler, S.M., Rumi, M.: NONLINEAR OPTICS, APPLICATIONS | Three-Dimensional Microfabrication. In: Encyclopedia of Modern Optics. pp. 189–206. Elsevier (2005)

  • Kusumawati, Y., Ivansyah, A.L., Ali, B.T.I., Kurnia, K.A., Hutama, A.S., Fansuri, H.: Photophysical properties of ammonium, pyrrolidinium, piperidinium, imidazolium, and pyridinium as a guide to prepare ionic-organic hybrid materials. Heliyon 8, e09121 (2022). https://doi.org/10.1016/j.heliyon.2022.e09121

    Article  Google Scholar 

  • Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  Google Scholar 

  • Lesar, A., Milošev, I.: Density functional study of the corrosion inhibition properties of 1, 2, 4-triazole and its amino derivatives. Chem. Phys. Lett. 483, 198–203 (2009)

    Article  ADS  Google Scholar 

  • Lifshitz, R., Arie, A., Bahabad, A.: Photonic quasicrystals for nonlinear optical frequency conversion. Phys. Rev. Lett. 95, 133901 (2005)

    Article  ADS  Google Scholar 

  • Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885

    Article  Google Scholar 

  • Maidur, S.R., Patil, P.S., Ekbote, A., Chia, T.S., Quah, C.K.: Molecular structure, second-and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative:(2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene] amino} phenyl) prop-2-en-1-one. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 184, 342–354 (2017)

    Article  ADS  Google Scholar 

  • Majumder, M., Misra, A.: Strategic design of thiophene-fused nickel dithiolene derivatives for efficient NLO response. Phys. Chem. Chem. Phys. 20, 19007–19016 (2018)

    Article  Google Scholar 

  • Marlina, L.A., Haryadi, W., Daengngern, R., Pranowo, H.D.: Molecular design of benzo[c][1,2,5]thiadiazole or thieno[3,4-d]pyridazine-based auxiliary acceptors through different anchoring groups in D–π–A–A framework: a DFT/TD-DFT study. J. Mol. Graph. Model. 113, 108148 (2022a). https://doi.org/10.1016/j.jmgm.2022.108148

    Article  Google Scholar 

  • Marlina, L.A., Haryadi, W., Pranowo, H.D.: Design of a D–π–A–A framework with various auxiliary acceptors on optoelectronic and charge transfer properties for efficient dyes in DSSCs: a DFT/TD-DFT study. J. Comput. Electron. 21, 361–377 (2022b).  https://doi.org/10.1007/s10825-022-01851-7

    Article  Google Scholar 

  • Mary, Y.S., Panicker, C.Y., Anto, P.L., Sapnakumari, M., Narayana, B., Sarojini, B.K.: Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2E)-1-(2, 4-Dichlorophenyl)-3-(3, 4, 5-trimethoxyphenyl) prop-2-en-1-one by HF and density functional methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135, 81–92 (2015)

    Article  ADS  Google Scholar 

  • Matos, M.J., Vazquez-Rodriguez, S., Uriarte, E., Santana, L.: Potential pharmacological uses of chalcones: a patent review (from June 2011–2014). Expert Opin. Ther. Pat. 25, 351–366 (2015)

    Article  Google Scholar 

  • Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A.R., Hatamjafari, F.: Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo [d] thiazole-2 (3 H)-imine and its para-substituted derivatives: Solvent and substituent effects. J. Chem. Res. 45, 147–158 (2021)

    Article  Google Scholar 

  • Mo, Y., Lin, Z., Wu, W., Zhang, Q.: Bond-distorted orbitals and effects of hybridization and resonance on C–C bond lengths. J. Phys. Chem. 100, 11569–11572 (1996). https://doi.org/10.1021/jp953433a

    Article  Google Scholar 

  • Morgante, P., Peverati, R.: The devil in the details: a tutorial review on some undervalued aspects of density functional theory calculations. Int. J. Quantum Chem. 120, e26332 (2020). https://doi.org/10.1002/qua.26332

    Article  Google Scholar 

  • Muhammad, S.: Symmetric vs. asymmetric: Which one is the better molecular configuration for achieving robust NLO response? J. Mol. Graph. Model. 114, 108209 (2022). https://doi.org/10.1016/j.jmgm.2022.108209

    Article  Google Scholar 

  • Muhammad, S., Al-Sehemi, A.G., Su, Z., Xu, H., Irfan, A., Chaudhry, A.R.: First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones. J. Mol. Graph. Model. 72, 58–69 (2017)

    Article  Google Scholar 

  • Muhammad, S., Nakano, M., Al-Sehemi, A.G., Irfan, A., Chaudhry, A.R., Tonami, T., Ito, S., Kishi, R., Kitagawa, Y.: Exploring the novel donor-nanotube archetype as an efficient third-order nonlinear optical material: asymmetric open-shell carbon nanotubes. Nanoscale 10, 16499–16507 (2018)

    Article  Google Scholar 

  • Muhammad, S., Sarwar, F., Bibi, S., Nadeem, R., Mushtaq, M.W., Al-Sehemi, A.G., Alarfaji, S.S., Hussain, S.: Insighting the functionally modified C60 fullerenes as an efficient nonlinear optical materials: aA quantum chemical study. Mater. Sci. Semicond. Process. 141, 106421 (2022)

    Article  Google Scholar 

  • Naik, V.S., Patil, P.S., Wong, Q.A., Quah, C.K., Gummagol, N.B., Jayanna, H.S.: Molecular structure, linear optical, second and third-order nonlinear optical properties of two non-centrosymmetric thiophene-chalcone derivatives. J. Mol. Struct. 1222, 128901 (2020)

    Article  Google Scholar 

  • Nakano, M., Fukuda, K., Champagne, B.: Third-order nonlinear optical properties of asymmetric non-alternant open-shell condensed-ring hydrocarbons: effects of diradical character, asymmetricity, and exchange interaction. J. Phys. Chem. C 120, 1193–1207 (2016)

    Article  Google Scholar 

  • Nesterov, V.N.: 3,5-Bis(4-methoxybenzylidene)-1-methyl-4-piperidone and 3,5-bis(4-methoxybenzylidene)-1-methyl-4-oxopiperidinium chloride: Potential biophotonic materials. Acta. Crystallogr. Sect. C Cryst. Struct. Commun. 60, 806–809 (2004). https://doi.org/10.1107/S0108270104022723

    Article  Google Scholar 

  • Oudar, J.L., Chemla, D.S.: Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664–2668 (1976). https://doi.org/10.1063/1.434213

    Article  ADS  Google Scholar 

  • Oudar, J.L., Chemla, D.S.: Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664–2668 (2008). https://doi.org/10.1063/1.434213

    Article  ADS  Google Scholar 

  • Panicker, C.Y., Varghese, H.T., Nayak, P.S., Narayana, B., Sarojini, B.K., Fun, H.K., War, J.A., Srivastava, S.K., Van Alsenoy, C.: Infrared spectrum, NBO, HOMO–LUMO, MEP and molecular docking studies (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 18–28 (2015). https://doi.org/10.1016/j.saa.2015.03.065

    Article  ADS  Google Scholar 

  • Parr, R.G., Szentpály, L.V., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  Google Scholar 

  • Ponnusamy Munusamy, A., Ammasi, A., Shkir, M.: Computational analysis of carbazole-based newly efficient D–π–A organic spacer dye derivatives for dye-sensitized solar cells. Struct. Chem. 33, 1097–1107 (2022). https://doi.org/10.1007/s11224-021-01853-4

    Article  Google Scholar 

  • Prasad, P.N., Williams, D.J.: Introduction to Nonlinear Optical Effects in Molecules and Polymers. Wiley, New York (1991)

    Google Scholar 

  • Prommin, C., Kerdpol, K., Saelee, T., Kungwan, N.: Effects of π-expansion, an additional hydroxyl group, and substitution on the excited state single and double proton transfer of 2-hydroxybenzaldehyde and its relative compounds: TD-DFT static and dynamic study. New J. Chem. 43, 19107–19119 (2019). https://doi.org/10.1039/c9nj05055h

    Article  Google Scholar 

  • Shao, Y., Mei, Y., Sundholm, D., Kaila, V.R.I.: Benchmarking the performance of time-dependent density functional theory methods on biochromophores. J. Chem. Theory Comput. 16, 587–600 (2020). https://doi.org/10.1021/acs.jctc.9b00823

    Article  Google Scholar 

  • Silva, D.L., Fonseca, R.D., Vivas, M.G., Ishow, E., Canuto, S., Mendonca, C.R., De Boni, L.: Experimental and theoretical investigation of the first-order hyperpolarizability of a class of triarylamine derivatives. J. Chem. Phys. 142, 064312 (2015). https://doi.org/10.1063/1.4906893

    Article  ADS  Google Scholar 

  • Sumithra, I.S., Jayashri, T.A., Krishnan, G.: X-ray diffraction, spectroscopic, thermal and surface morphological studies of gamma-irradiated diaquamalonatomanganese(II) (DMM). J. Radioanal. Nucl. Chem. 307, 835–842 (2016). https://doi.org/10.1007/s10967-015-4283-2

    Article  Google Scholar 

  • Sutradhar, T., Misra, A.: Theoretical study on the nonlinear optical property of boron nitride nanoclusters functionalized by electron donating and electron accepting groups. J. Phys. Chem. A. 125, 2436–2445 (2021)

    Article  Google Scholar 

  • Tahir, M.N., Khalid, M., Islam, A., Mashhadi, S.M.A., Braga, A.A.C.: Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives. J. Mol. Struct. 1127, 766–776 (2017)

    Article  ADS  Google Scholar 

  • Tamer, Ö., Avci, D., Atalay, Y.: Calculations of electronic structure and nonlinear optical parameters of 4-methoxybenzaldehyde-N-methyl-4-stilbazolium tosylate*. J. Appl. Spectrosc. 80, 971–982 (2014). https://doi.org/10.1007/s10812-014-9875-z

    Article  ADS  Google Scholar 

  • Tejkiran, P.J., Teja, M.S.B., Kumar, P.S.S., Sankar, P., Philip, R., Naveen, S., Lokanath, N.K., Rao, G.N.: DA–π–D Synthetic approach for thienyl chalcones–NLO–a structure activity study. J. Photochem. Photobiol. A Chem. 324, 33–39 (2016)

    Article  Google Scholar 

  • Thamarai, A., Vadamalar, R., Raja, M., Muthu, S., Narayana, B., Ramesh, P., Muhamed, R.R., Sevvanthi, S., Aayisha, S.: Molecular structure interpretation, spectroscopic (FT-IR, FT-Raman), electronic solvation (UV–Vis, HOMO-LUMO and NLO) properties and biological evaluation of (2E)-3-(biphenyl-4-yl)-1-(4-bromophenyl) prop-2-en-1-one: experimental and computational modeling. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 226, 117609 (2020)

    Article  Google Scholar 

  • Thomas, A., Chitumalla, R.K., Puyad, A.L., Mohan, K.V., Jang, J.: Computational studies of hole/electron transport in positional isomers of linear oligo-thienoacenes: evaluation of internal reorganization energies using density functional theory. Comput. Theor. Chem. 1089, 59–67 (2016)

    Article  Google Scholar 

  • Tu, Y., Chai, K., Wu, J., Hu, Y., Shi, S., Yang, D., Yao, T.: A rational design to improve selective imaging of tau aggregates by constructing side substitution on N, N-dimethylaniline/quinoxaline D–π–A fluorescent probe. Sens. Actuators B Chem. 380, 133406 (2023). https://doi.org/10.1016/j.snb.2023.133406

    Article  Google Scholar 

  • Vazquez-Rodriguez, S., López, R.L., Matos, M.J., Armesto-Quintas, G., Serra, S., Uriarte, E., Santana, L., Borges, F., Crego, A.M., Santos, Y.: Design, synthesis and antibacterial study of new potent and selective coumarin–chalcone derivatives for the treatment of tenacibaculosis. Bioorg. Med. Chem. 23, 7045–7052 (2015)

    Article  Google Scholar 

  • Virkki, M., Tuominen, O., Forni, A., Saccone, M., Metrangolo, P., Resnati, G., Kauranen, M., Priimagi, A.: Halogen bonding enhances nonlinear optical response in poled supramolecular polymers. J. Mater. Chem. C 3, 3003–3006 (2015)

    Article  Google Scholar 

  • Walker, M., Harvey, A.J.A., Sen, A., Dessent, C.E.H.: Performance of M06, M06–2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J. Phys. Chem. A 117, 12590–12600 (2013)

    Article  Google Scholar 

  • Wazzan, N., Irfan, A.: Exploring the optoelectronic and charge transport properties of pechmann dyes as efficient OLED materials. Optik (stuttg) 197, 163200 (2019)

    Article  ADS  Google Scholar 

  • Wei, H., Ruan, J., Zhang, X.: Coumarin–chalcone hybrids: promising agents with diverse pharmacological properties. RSC Adv. 6, 10846–10860 (2016)

    Article  ADS  Google Scholar 

  • Wykes, M., Milián-Medina, B., Gierschner, J.: Computational engineering of low bandgap copolymers. Front. Chem. 1, 35 (2013)

    Article  ADS  Google Scholar 

  • Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004). https://doi.org/10.1016/j.cplett.2004.06.011

    Article  ADS  Google Scholar 

  • Yoneda, K., Nakano, M., Fukuda, K., Matsui, H., Takamuku, S., Hirosaki, Y., Kubo, T., Kamada, K., Champagne, B.: Third-order nonlinear optical properties of one-dimensional open-shell molecular aggregates composed of phenalenyl radicals. Chem. Eur. J. 20, 11129–11136 (2014)

    Article  Google Scholar 

  • Yousif, A.A., Fadhil, G.F.: DFT of para methoxy dichlorochalcone isomers. Investigation of structure, conformation, FMO, charge, and NLO properties. Chem. Data Collect. 31, 100618 (2021)

    Article  Google Scholar 

  • Yushina, I.D., Masunov, A.E., Lopez, D., Dyakov, A.A., Bartashevich, E.: V: Toward first-principles design of organic nonlinear optical materials: Crystal structure prediction and halogen bonding impact on hyperpolarizabilities of 2-iodo-3-hydroxypyridine. Cryst. Growth Des. 18, 5069–5079 (2018)

    Article  Google Scholar 

  • Zhao, Y., Truhlar, D.G.: Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008). https://doi.org/10.1021/ar700111a

    Article  Google Scholar 

  • Zyss, J.: Molecular Nonlinear Optics: Materials, Physics, and Devices. Academic Press, Cambridge (2013)

    Google Scholar 

Download references

Acknowledgements

LAM acknowledges postdoctoral funding from the Manajemen Talenta BRIN fellowship program 2023 No. 15/II/HK/2023. The calculations were partly performed at Mahameru High-Performance Computing, National Research and Innovation Agency (BRIN) and SymBaHCat Cluster belonging to the Symbah Foundation.

Funding

L.A.M. acknowledges funding from Manajemen Talenta BRIN fellowship program 2023 No. 15/II/HK/2023.

Author information

Authors and Affiliations

Authors

Contributions

LAM conceived the idea, led the investigation and methodology, and equally contributed to data curation, formal analysis, funding acquisition, and writing the original draft. ASH contributed equally to formal analysis, supervision, validation, and original draft writing. SNZ and MFP provided support in the investigation. WJS assisted in writing, reviewing, and editing the manuscript. WDS took the lead in supervision and equally contributed to reviewing and editing the manuscript.

Corresponding authors

Correspondence to Aulia Sukma Hutama or Wahyu Dita Saputri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11082_2023_5383_MOESM1_ESM.pdf

Cartesian coordinate of optimized compounds, HOMO−LUMO map of the parent molecule, and hyperpolarizability tensor of the tested compounds. (PDF 359 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marlina, L.A., Hutama, A.S., Zanah, S.N. et al. Performance of density functional theory for calculating the electronic, static, and dynamic nonlinear optical properties of asymmetric (3E,5E)-3,5-dibenzylidene-piperidin-4-one derivatives. Opt Quant Electron 55, 1081 (2023). https://doi.org/10.1007/s11082-023-05383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05383-7

Keywords

Navigation