Skip to main content
Log in

Mathematical modelling of a ring resonator based refractive index sensor for cancer detection

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A silicon microring resonator-based refractive index sensor is proposed using the coupled mode theory (CMT). The ring resonator is decomposed into two bent-straight waveguide coupling regions to obtain a mathematical model. To derive coupled mode equations for the interaction between bent and straight waveguides, the bent mode fields are converted from cylindrical coordinate systems to cartesian coordinates and are solved by using numerical integration. Coupled mode equations between bent and straight waveguides are derived, describing the input and output amplitude related by the scattering matrix. For the fixed dimensions and parameters, the resonant wavelength of the silicon micro-ring resonator structure is computed. The proposed CMT-based ring resonator results are validated with high accuracy with simulation results of FDTD and 2D FEM methods. Compared to FDTD and 2D FEM methods, the CMT-based ring resonator shows a significant reduction in computer resource requirements (time, speed, and memory). The ring resonator-based refractive index sensor for cancer detection applications is proposed with a high sensitivity of 146 nm/Refractive index unit and a Q factor of 3459. Finally, various parameters of the ring resonator are varied to improve sensitivity and Q factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Ali, L., Mohammed, M.U., Khan, M., Yousuf, A.H.B., Chowdhury, M.H.: High-quality optical ring resonator-based biosensor for cancer detection. IEEE Sens. J. 20(4), 1867–1875 (2019)

    Article  ADS  Google Scholar 

  • Butt, M., Khonina, S., Kazanskiy, N.: Hybrid plasmonic waveguide-assisted metal-insulator-metal ring resonator for refractive index sensing. J. Mod. Opt. 65(9), 1135–1140 (2018)

    Article  ADS  Google Scholar 

  • Butt, M.A., Kaźmierczak, A., Tyszkiewicz, C., Karasiński, P., Piramidowicz, R.: Mode sensitivity exploration of silica-titania waveguide for refractive index sensing applications. Sensors (2021). https://doi.org/10.3390/s21227452

    Article  Google Scholar 

  • Chin, M., Ho, S.: Design and modeling of waveguide-coupled single-mode microring resonators. J. Lightwave Technol. 16(8), 1433–1446 (1998)

    Article  ADS  Google Scholar 

  • Damborskỳ, P., Švitel, J., Katrlík, J.: Optical biosensors. Essays Biochem. 60(1), 91–100 (2016)

    Article  Google Scholar 

  • Engell, H.C.: Cancer cells in the circulating blood; a clinical study on the occurrence of cancer cells in the peripheral blood and in venous blood draining the tumour area at operation. Ugeskrift for laeger 117(25), 822–823 (1955)

    Google Scholar 

  • Estrela, P., Damborský, P., Švitel, J., Katrlík, J.: Optical biosensors. Essays Biochem. 60(1), 91–100 (2016)

    Article  Google Scholar 

  • Guider, R., Gandolfi, D., Chalyan, T., Pasquardini, L., Samusenko, A., Pucker, G., Pederzolli, C., Pavesi, L.: Design and optimization of SiON ring resonator-based biosensors for aflatoxin m1 detection. Sensors 15(7), 17300–17312 (2015a)

    Article  ADS  Google Scholar 

  • Guider, R., Gandolfi, D., Chalyan, T., Pasquardini, L., Samusenko, A., Pederzolli, C., Pucker, G., Pavesi, L.: Sensitivity and limit of detection of biosensors based on ring resonators. Sens. Bio-sensing Res. 6, 99–102 (2015b)

    Article  Google Scholar 

  • Hammer, M.: Online mode solver. https://www.computational-photonics.eu/m_hammer.html (2023)

  • Hammer, M., Hiremath, K.R., Stoffer, R.: Analytical approaches to the description of optical microresonator devices. In: AIP Conference Proceedings, vol. 709, pp. 48–71. American Institute of Physics (2004)

  • Heiblum, M., Harris, J.: Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. 11(2), 75–83 (1975). https://doi.org/10.1109/JQE.1975.1068563

    Article  ADS  Google Scholar 

  • Hiremath, K.R., Hammer, M., Stoffer, R., Prkna, L., Čtyrokỳ, J.: Analytic approach to dielectric optical bent slab waveguides. Opt. Quantum Electron. 37(1–3), 37–61 (2005). https://doi.org/10.1109/JQE.1976.1069152

    Article  Google Scholar 

  • Hiremath, K.R., Stoffer, R., Hammer, M.: Modeling of circular integrated optical microresonators by 2-d frequency domain coupled mode theory. Opt. Commun. 257(2), 277–297 (2006)

    Article  ADS  Google Scholar 

  • Khozeymeh, F., Razaghi, M., Chalyan, T., Pavesi, L.: Fast analytical modelling of an SOI micro-ring resonator for bio-sensing application. J. Phys. D Appl. Phys. 51(28), 285401–285413 (2018)

    Article  Google Scholar 

  • Kundal, S., Khandelwal, A.: Optimization of sensitivity and q-factor of ring resonator based label free biosensor. In: 2022 Workshop on Recent Advances in Photonics (WRAP), pp. 1–2 (2022). https://doi.org/10.1109/WRAP54064.2022.9758305

  • Kundal, S., Bhatnagar, A., Sharma, R.: 1d photonic crystal waveguide based biosensor for skin cancer detection application. In: Optical and Wireless Technologies, pp. 443–450. Springer (2022)

  • Prkna, L., Čtyrokỳ, J., Hubálek, M.: Ring microresonator as a photonic structure with complex eigenfrequency. Opt. Quantum Electron. 36(1), 259–269 (2004)

    Article  Google Scholar 

  • Rahman, B.M.A., Fernandez, F.A., Davies, J.B.: Review of finite element methods for microwave and optical waveguides. Proc. IEEE 79(10), 1442–1448 (1991). https://doi.org/10.1109/5.104219

    Article  ADS  Google Scholar 

  • Sarkaleh, A.K., Lahijani, B.V., Saberkari, H., Esmaeeli, A.: Optical ring resonators: a platform for biological sensing applications. J. Med. Signals Sens. 7(3), 185–191 (2017)

    Article  Google Scholar 

  • Scheler, O., Kindt, J.T., Qavi, A.J., Kaplinski, L., Glynn, B., Barry, T., Kurg, A., Bailey, R.C.: Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. Biosens. Bioelectron. 36(1), 56–61 (2012)

    Article  Google Scholar 

  • Shi, B., Chen, X., Cai, Y., Zhang, S., Wang, T., Wang, Y.: Compact slot microring resonator for sensitive and label-free optical sensing. Sensors 22(17), 6467–6479 (2022)

    Article  ADS  Google Scholar 

  • Shia, W.W., Bailey, R.C.: Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays. Anal. Chem. 85(2), 805–810 (2013)

    Article  Google Scholar 

  • Stoffer, R., Hiremath, K.R., Hammer, M.: Comparison of coupled mode theory and FDTD simulations of coupling between bent and straight optical waveguides. Am. Inst. Phys. 709(1), 366–377 (2004)

    ADS  Google Scholar 

  • Taflove, A., Hagness, S.C., Piket-May, M.: Computational electromagnetics: the finite-difference time-domain method. Electr. Eng. Handb. 3, 629–670 (2005)

    Article  Google Scholar 

  • Taitt, C.R., Anderson, G.P., Ligler, F.S.: Evanescent wave fluorescence biosensors: advances of the last decade. Biosens. Bioelectron. 76, 103–112 (2016)

    Article  Google Scholar 

  • TalebiFard, S., Schmidt, S., Shi, W., Wu, W., Jaeger, N.A., Kwok, E., Ratner, D.M., Chrostowski, L.: Optimized sensitivity of silicon-on-insulator (SOI) strip waveguide resonator sensor. Biomed. Optics Express 8(2), 500–511 (2017)

    Article  Google Scholar 

  • Vassallo, C.: Optical waveguide concepts. Opt. Wave Sci. Technol. 1, 1–322 (1991)

    MathSciNet  Google Scholar 

  • Washburn, A.L., Gunn, L.C., Bailey, R.C.: Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal. Chem. 81(22), 9499–9506 (2009)

    Article  Google Scholar 

  • Yang, T., Liu, H., Shen, K., Luo, W., Li, X.: Research on refractive index sensing performance of all-dielectric magnetic resonance metasurface. In: 4th Optics Young Scientist Summit (OYSS 2020), vol. 11781, pp. 179–186. SPIE (2021)

  • Yousuf, S.E., Shahin, M.M., Gevorgyan, H., Voort, B., Taha, A.M., Dimas, C., Dahlem, M.S., Khilo, A.: Suspended microring resonator sensor using internal sub-wavelength grating. In: Optical Sensors, pp. 4–4. Optica Publishing Group (2015)

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SK worked on the concept of a mathematical model of ring resonator refractive index sensor for cancer detection (Sects. 1, 3) and RK contributed for solving mode equations of ring and straight waveguide to obtain the analytical model of the proposed device (Sect. 2) under the supervision of AK and KRH.

Corresponding author

Correspondence to Sanchit Kundal.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have given Consent for Publication as per the journal policy.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundal, S., Kumar, R., Khandelwal, A. et al. Mathematical modelling of a ring resonator based refractive index sensor for cancer detection. Opt Quant Electron 55, 1020 (2023). https://doi.org/10.1007/s11082-023-05278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05278-7

Keywords

Navigation