Skip to main content
Log in

Generation of donut Humbert beam of type-II

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A new family of donut beams known as Humbert beam of type-II was developed by converting the Bessel-Gauss beams that were travelling through an ABCD paraxial optical system with a spiral phase plate. The superposition of Whittaker beam can be used to represent the amplitude field of Humbert beam of type-II. The transformation and propagation of the Bessel-Gauss beams using a spiral phase plate after propagating the examined optical system, is shown and deduced in detail. To investigate the comportment of Humbert beams of type-II in free space and through telescope, numerical simulations are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets is used in the present study.

References

  • Bandres, M.A., Gutiérrez-Vega, J.C.: Circular beams. Opt. Lett. 33, 177–179 (2008)

    Article  ADS  Google Scholar 

  • Bandres, M.A., Lopez-Mago, D., Gutiérrez-Vega, J.C.: Higher order moments and overlaps of rotationally symmetric beams. J. Opt. 12, 015706–015716 (2010)

    Article  ADS  Google Scholar 

  • Belafhal, A., Chib, S., Usman, T.: Computation of integral transforms in terms of double hypergeometric series ψ2 with applications. Submitted for publication to Applied Mathematics and Computation (December 2022)

  • Belafhal, A., Nebdi, H.: Generation and propagation of novel donut beams by a spiral phase plate: Humbert beams. Opt. Quant. Electron. 46, 201–208 (2014)

    Article  Google Scholar 

  • Belafhal, A., Saad, F.: Conversion of circular beams by a spiral phase plate: generation of generalized Humbert beams. Optik 138, 516–528 (2017)

    Article  ADS  Google Scholar 

  • Berger, V., Gauthier-Lafaye, O., Costard, E.: Fabrication of a 2D photonic bandgap by a holographic method. Elec. Lett. 33, 425–426 (1997)

    Article  ADS  Google Scholar 

  • Berry, M.V.: Optical vortices evolving from helicoidal integer and fractional phase step. J. Opt. a: Pure Appl. Opt. 6, 259–268 (2004)

    Article  ADS  Google Scholar 

  • Bouhelier, A., Ignatovich, F., Bruyant, A., Huang, C., Des Francs, G.C., Weeber, J.C., Novotny, L.: Surface plasmon interference excited by tightly focused laser beams. Opt. Lett. 32(17), 2535–2537 (2007)

    Article  ADS  Google Scholar 

  • Caron, C.F.R., Potvliege, R.M.: Bessel-modulated Gaussian beams with quadratic radial dependence. Opt. Commun. 15, 83–93 (1999)

    Article  ADS  Google Scholar 

  • Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  • Courtial, J., Padgett, M.J.: Performance of a cylindrical lens mode converter producing Laguerre-Gaussian laser modes. Opt. Commun. 159, 13–18 (1999)

    Article  ADS  Google Scholar 

  • Davis, C.C., Smolyaninov, I.I., Milner, S.D.: Flexible optical wireless link and network. IEEE Commun. Mag. 41, 51–57 (2003)

    Article  Google Scholar 

  • Ez-zariy, L., Khannous, F., Nebdi, H., Khouilid, M., Belafhal, A.: Generation of new doughnut beams from Li’s flattened Gaussian beams. J. Optoelec. Adv. Mater. 15, 1188–1199 (2013)

    Google Scholar 

  • Fatemi, F.K., Bashkansky, M.: Generation of hollow beams by using a binary spatial light modulator. Opt. Lett. 31, 864–866 (2006)

    Article  ADS  Google Scholar 

  • Förster, L.: Microwave control of atomic motion in a spin dependent optical lattice. Ph.D. Thesis University of Bonn, Germany (2010)

  • Gori, F., Guattari, G., Padovani, C.: Bessel-Gauss beams. Opt. Commun. 64, 491–495 (1987)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 5th edn. Academic Press, New York (1994)

    MATH  Google Scholar 

  • Gutiérrez-Vega, J.C.: Fractionalization of optical beams: II Elegant Laguerre-Gaussian Modes. Opt. Express 15, 6300–6313 (2007)

    Article  ADS  Google Scholar 

  • Gutiérrez-Vega, J.C., Bandres, M.A.: Helmholtz-Gauss waves. J. Opt. Soc. Am. A 22, 289–298 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Karimi, E., Zito, G., Piccirillo, B., Marruci, L., Santamato, E.: Hypergeometric-Gaussian modes. Opt. Lett. 32, 3053–3055 (2007)

    Article  ADS  Google Scholar 

  • Kostyuk, G., Shkuratova, V., Petrov, A., Stepanyuk, D., Zakoldaev, R.: Spiral phase plate for generation of scalar vortex beam made on fused silica by laser-induced microplasma. Opt. Quant. Electron. 55, 344 (2023)

    Article  Google Scholar 

  • Kotlyar, V.V., Skidanov, R.V., Khonina, S.N., Soifer, V.A.: Hypergeometric modes. Opt. Lett. 32, 742–744 (2007)

    Article  ADS  Google Scholar 

  • Lopez-Mago, D., Bandres, M.A., Gutiérrez-Vega, J.C.: Propagation of Whittaker-Gaussian beams. Proc. SPIE 7430, 743013–743018 (2009)

    Article  Google Scholar 

  • Mawardi, A., Hild, S., Widera, A., Meschede, D.: ABCD-treatment of a propagating doughnut beam generated by a spiral phase plate. Opt. Express 19, 21205–21210 (2011)

    Article  ADS  Google Scholar 

  • Mawardi, A.: Generation of a donut beam for a tight radial confinement of atoms in a one-dimensional optical lattice. Master Thesis University of Bonn, Germany (2011)

  • Meier, M., Romano, V., Feurer, T.: Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A 86, 329–334 (2007)

    Article  ADS  Google Scholar 

  • Pääkkönen, P., Turunen, J.: Resonators with Bessel-Gauss modes. Opt. Commun. 156, 359–366 (1998)

    Article  ADS  Google Scholar 

  • Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Halsted Press, Wiley, New York (1984)

    MATH  Google Scholar 

  • Vasara, A., Turunen, J., Friberg, A.T.: Realization of general non-diffracting beams with computer generated holograms. J. Opt. Soc. Am. A 6, 1748–1754 (1989)

    Article  ADS  Google Scholar 

  • Wang, X., Littman, M.G.: Laser cavity for generation of variable-radius rings of light. Opt. Lett. 18, 767–768 (1993)

    Article  ADS  Google Scholar 

  • Wei, S., Bu, J., Zhu, S., Yuan, X.: Image edge-enhancement in optical microscopy with a phase mismatched spiral phase plate. Chin. Opt. Lett. 9, 1671–7694 (2011)

    Google Scholar 

  • Xu, P., He, X., Wang, J., Zhan, M.: Trapping a single atom in a blue detuned optical bottle beam trap. Opt. Lett. 35, 2164–2166 (2010)

    Article  ADS  Google Scholar 

  • Zhang, N., Yuan, X.C., Burge, R.E.: Extending the detection range of optical vortices by Dammann vortex gratings. Opt. Lett. 35, 3495–3497 (2010)

    Article  ADS  Google Scholar 

  • Zhang, K., Wang, Y., Yuan, Y., Burokur, S.N.: A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces. Appl. Sci. 10, 1015–1136 (2020)

    Article  Google Scholar 

Download references

Funding

No funding is received from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors performed simulations, data collection and analysis and commented the present version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Belafhal.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies involving animals or human participants performed by any of the authors. We declare that this manuscript is original, and is not currently considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to participate

Informed consent was obtained from all authors.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chib, S., Khannous, F. & Belafhal, A. Generation of donut Humbert beam of type-II. Opt Quant Electron 55, 936 (2023). https://doi.org/10.1007/s11082-023-05204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05204-x

Keywords

Navigation