Skip to main content
Log in

Suppression of chaos in the periodically perturbed generalized complex Ginzburg–Landau equation by means of parametric excitation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The generalized complex Ginzburg–Landau equation is considered. An analytical condition for the existence of horseshoe chaos is obtained for the traveling wave reduction of the investigated equation by using the Melnikov method. A way to control chaos in the dynamical system is proposed. An analytical prediction is tested numerically by plotting attraction basins of attraction of the Poincare section of the studied system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Akram, G., Sadaf, M., Khan, M.A.U.: Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik 251, 168163 (2022)

    ADS  Google Scholar 

  • Aljohani, A., El-Zahar, E., Ebaid, A., et al.: Optical soliton perturbation with Fokas–Lenells model by Riccati equation approach. Optik 172, 741–745 (2018)

    ADS  Google Scholar 

  • Arshed, S., Biswas, A., Guggilla, P., et al.: Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation with full nonlinearity. Phys. Lett. A 384(26), 126191 (2020)

    MathSciNet  MATH  Google Scholar 

  • Battelli, F., Fečkan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Physica D 241(22), 1962–1975 (2012)

    ADS  MathSciNet  Google Scholar 

  • Bekir, A., Zahran, E.H.: Bright and dark soliton solutions for the complex Kundu–Eckhaus equation. Optik 223, 165233 (2020)

    ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., et al.: Optical soliton perturbation with full nonlinearity for Fokas–Lenells equation. Optik 165, 29–34 (2018)

    ADS  Google Scholar 

  • Biswas, A., Yıldırım, Y., Yaşar, E., et al.: Optical soliton solutions to Fokas–Lenells equation using some different methods. Optik 173, 21–31 (2018)

    ADS  Google Scholar 

  • Braiman, Y., Goldhirsch, I.: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 66(20), 2545 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  • Chacón, R.: Suppression of chaos by selective resonant parametric perturbations. Phys. Rev. E 51(1), 761 (1995)

    ADS  Google Scholar 

  • Chacón, R.: Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1846), 2335–2351 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Chacón, R., Palmero, F., Balibrea, F.: Taming chaos in a driven Josephson junction. Int. J. Bifurc. Chaos 11(07), 1897–1909 (2001)

    Google Scholar 

  • Chacón, R., et al.: Control of Homoclinic Chaos by Weak Periodic Perturbations. World Scientific (2005)

    MATH  Google Scholar 

  • Farshidianfar, A., Saghafi, A.: Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis. Phys. Lett. A 378(46), 3457–3463 (2014)

    ADS  MathSciNet  Google Scholar 

  • Gepreel, K.A., Zayed, E., Alngar, M.: New optical solitons perturbation in the birefringent fibers for the CGL equation with Kerr law nonlinearity using two integral schemes methods. Optik 227, 166099 (2021)

    ADS  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer (2013)

    MATH  Google Scholar 

  • Haller, G., Wiggins, S.: Orbits homoclinic to resonances: the Hamiltonian case. Physica D 66(3–4), 298–346 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  • Haller, G., Wiggins, S.: Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrödinger equation. Physica D 85(3), 311–347 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  • Haller, G., Wiggins, S.: Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems. Physica D 90(4), 319–365 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  • Just, W., Bernard, T., Ostheimer, M., et al.: Mechanism of time-delayed feedback control. Phys. Rev. Lett. 78(2), 203 (1997)

    ADS  Google Scholar 

  • Kudryashov, N.A.: First integrals and general solution of the Fokas–Lenells equation. Optik 195, 163135 (2019)

    ADS  Google Scholar 

  • Kudryashov, N.A.: First integrals and general solution of the complex Ginzburg–Landau equation. Appl. Math. Comput. 386, 125407 (2020)

    MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A., Lavrova, S.F.: Dynamical properties of the generalized model for description of propagation pulses in optical fiber with arbitrary refractive index. Optik 245, 167679 (2021)

    ADS  Google Scholar 

  • Kudryashov, N., Lavrova, S.: Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: a Melnikov approach. Optik 265, 169454 (2022)

    ADS  Google Scholar 

  • Lai, Y.C., Grebogi, C.: Synchronization of chaotic trajectories using control. Phys. Rev. E 47(4), 2357 (1993)

    ADS  Google Scholar 

  • Lai, Y.C., Grebogi, C.: Converting transient chaos into sustained chaos by feedback control. Phys. Rev. E 49(2), 1094 (1994)

    ADS  Google Scholar 

  • Leonov, G.A.: Pyragas stabilizability via delayed feedback with periodic control gain. Syst. Control Lett. 69, 34–37 (2014)

    MathSciNet  MATH  Google Scholar 

  • Lima, R., Pettini, M.: Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41(2), 726 (1990)

    ADS  MathSciNet  Google Scholar 

  • Ling, L., Feng, B.F., Zhu, Z.: General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal. Real World Appl. 40, 185–214 (2018)

    MathSciNet  MATH  Google Scholar 

  • Miwadinou, C., Monwanou, A.V., Hinvi, L.A., et al.: Melnikov chaos in a modified Rayleigh–Duffing oscillator with \(\phi ^6\) potential. Int. J. Bifurc. Chaos 26(05), 1650085 (2016)

    MathSciNet  MATH  Google Scholar 

  • Miwadinou, C., Monwanou, A., Hinvi, L., et al.: Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh–Liénard oscillator. Chaos Solitons Fractals 113, 89–101 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Miwadinou, C., Monwanou, A., Koukpemedji, A., et al.: Chaotic motions in forced mixed Rayleigh–Liénard oscillator with external and parametric periodic-excitations. Int. J. Bifurc. Chaos 28(03), 1830005 (2018)

    MATH  Google Scholar 

  • Nagai, Y., Lai, Y.C.: Selection of a desirable chaotic phase using small feedback control. Phys. Rev. E 51(5), 3842 (1995)

    ADS  Google Scholar 

  • Olabodé, D., Miwadinou, C., Monwanou, A., et al.: Horseshoes chaos and its passive control in dissipative nonlinear chemical dynamics. Phys. Scr. 93(8), 085203 (2018)

    ADS  Google Scholar 

  • Olabodé, D., Miwadinou, C., Monwanou, V., et al.: Effects of passive hydrodynamics force on harmonic and chaotic oscillations in nonlinear chemical dynamics. Physica D 386, 49–59 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • Osman, M., Ghanbari, B.: New optical solitary wave solutions of Fokas–Lenells equation in presence of perturbation terms by a novel approach. Optik 175, 328–333 (2018)

    ADS  Google Scholar 

  • Palmero, F., Chacón, R.: Suppressing chaos in damped driven systems by non-harmonic excitations: experimental robustness against potential’s mismatches. Nonlinear Dyn. 108(3), 2643–2654 (2022)

    Google Scholar 

  • Peng, C., Li, Z., Zhao, H.: New exact solutions to the Lakshmanan–Porsezian–Daniel equation with Kerr law of nonlinearity. Math. Probl. Eng. 2022 (2022)

  • Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)

    ADS  Google Scholar 

  • Pyragas, V., Pyragas, K.: Act-and-wait time-delayed feedback control of nonautonomous systems. Phys. Rev. E 94(1), 012201 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • Pyragas, V., Pyragas, K.: Act-and-wait time-delayed feedback control of autonomous systems. Phys. Lett. A 382(8), 574–580 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Pyragas, V., Pyragas, K.: State-dependent act-and-wait time-delayed feedback control algorithm. Commun. Nonlinear Sci. Numer. Simul. 73, 338–350 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ramesh, M., Narayanan, S.: Chaos control by nonfeedback methods in the presence of noise. Chaos Solitons Fractals 10(9), 1473–1489 (1999)

    ADS  MATH  Google Scholar 

  • Rezazadeh, H., Korkmaz, A., Eslami, M., et al.: A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method. Opt. Quant. Electron. 51, 1–12 (2019)

    Google Scholar 

  • Sadaf, M., Akram, G., Arshed, S., et al.: Optical solitons and other solitary wave solutions of (1+ 1)-dimensional Kudryashov’s equation with generalized anti-cubic nonlinearity. Opt. Quant. Electron. 55(6), 529 (2023)

    Google Scholar 

  • Shinbrot, T., Ott, E., Grebogi, C., et al.: Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65(26), 3215 (1990)

    ADS  Google Scholar 

  • Tchatchueng, S., Siewe Siewe, M., Moukam Kakmeni, F., et al.: Bifurcation response and Melnikov chaos in the dynamic of a Bose–Einstein condensate loaded into a moving optical lattice. Nonlinear Dyn. 75, 461–474 (2014)

    MathSciNet  Google Scholar 

  • Ye, Y., Hou, C., Cheng, D., et al.: Rogue wave solutions of the vector Lakshmanan–Porsezian–Daniel equation. Phys. Lett. A 384(11), 126226 (2020)

    MathSciNet  MATH  Google Scholar 

  • Yin, J., Tang, W.K.: Perturbation-induced chaos in nonlinear Schrödinger equation with single source and its characterization. Nonlinear Dyn. 90, 1481–1490 (2017)

    MATH  Google Scholar 

  • Yin, J., Zhao, L.: Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term. Phys. Lett. A 378(47), 3516–3522 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Yin, J., Duan, X., Tian, L.: Optical secure communication modeled by the perturbed nonlinear Schrödinger equation. Opt. Quant. Electron. 49, 1–11 (2017)

    Google Scholar 

  • Zayed, E.M., Alngar, M.E., Biswas, A., et al.: Pure-cubic optical soliton perturbation with complex Ginzburg-Landau equation having a dozen nonlinear refractive index structures. J. Commun. Technol. Electron. 66(5), 481–544 (2021)

    Google Scholar 

  • Zayed, E.M., Nofal, T.A., Alngar, M.E., et al.: Cubic-quartic optical soliton perturbation in polarization-preserving fibers with complex Ginzburg–Landau equation having five nonlinear refractive index structures. Optik 231, 166381 (2021)

    ADS  Google Scholar 

  • Zhao, L., Yin, J.: Chaotic behaviour from smooth and non-smooth optical solitons under external perturbation. Pramana 87, 1–8 (2016)

    Google Scholar 

Download references

Funding

This research was supported by Russian Science Foundation Grant No. 23-41-00070 “Nonlinear mathematical physics approaches for studying processes in fiber lasers and nonlinear control and excitation of novel soliton localized modes”.

Author information

Authors and Affiliations

Authors

Contributions

NAK: Conceptualization, supervision, writing—review and editing. SFL: Formal analysis, investigation, writing—original draft.

Corresponding author

Correspondence to Sofia Lavrova.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Homoclinic orbits (12) and (13).

Here we provide details about finding homoclinic orbits (12) and (13). For the first orbit (12), substituting \(A=(1-n)/n, \ n\in \mathbb {Z} \ \) in (10) yields

$$\begin{aligned} H(u,v) = \frac{v^{2}}{2}+\frac{B \,u^{2}}{2 n}+\frac{D u^{2 n +2}}{2 n \left( n +1\right) }, \quad n\in \mathbb {Z}. \end{aligned}$$
(30)

In the considered case of \(B<0\) and \(D>0\), the homoclinic orbit \(({u_{hom}}_1,{v_{hom}}_1)\) is a level curve of (30), which passes through the saddle point \(O=(0,0)\) and satisfies \(u_z=v\). This gives

$$\begin{aligned} \frac{du}{dz} = \frac{u\sqrt{-Bn-Du^{2n}-B}}{\sqrt{n(n+1)}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(31)

Separating the variables in Eq. (31) and integrating both sides of the resulting expression yields

$$\begin{aligned} -\frac{ \,\textrm{arctanh}\! \;\left( \frac{\sqrt{B n +D u^{2 n}+B}}{\sqrt{n +1}\, \sqrt{B}}\right) }{\sqrt{n}\, \sqrt{|B|}} = z, \quad n\in \mathbb {Z}. \end{aligned}$$
(32)

Solving (32) for u, we get

$$\begin{aligned} {u^\pm _{hom}}_1(z) = \pm \; \left( \frac{\left( n +1\right) {| B |} \left( 1-\left( \tanh ^{2}\left( \sqrt{n {| B |}}\, z \right) \right) \right) }{D}\right) ^{\frac{1}{2 n}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(33)

The expression for \({v^\pm _{hom}}_1(z)\) is obtained by differentiating (33). For the second orbit (13), letting \(A=n/(n+1)\)in (10) leads to

$$\begin{aligned} H(u,v) = \frac{v^{2}}{2}+\frac{B \left( 2 n +1\right) u^{2}}{2 n +2}+\frac{D \left( 2 n +1\right) ^{2} u^{\frac{6 n +4}{2 n +1}}}{6 n^{2}+10 n +4}, \quad n\in \mathbb {Z}. \end{aligned}$$
(34)

Similarly, we get that the homoclinic orbit \(({u_{hom}}_2,{v_{hom}}_2)\) at \(B<0\) and \(D>0\) solves the following equation

$$\begin{aligned} \frac{du}{dz} = \frac{ \sqrt{2 n +1}\, \sqrt{-D \left( 2 n +1\right) u^{\frac{6 n +4}{2 n +1}}- \left( 3n +{2}\right) u^{2} B}}{\sqrt{3 n^{2}+5 n +2}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(35)

Integrating Eq. (35), after the separation of variables, results in

$$\begin{aligned} \frac{ \sqrt{3 n^{2}+5 n +2}\, \sqrt{2 n +1}\, \textrm{arctanh}\!\; \left( \frac{\sqrt{\left( 2 D n +D\right) u^{\frac{2 n +2}{2 n +1}}+3 B n +2 B}}{\sqrt{3 n +2}\, \sqrt{B}}\right) }{\sqrt{3 n +2}\, \sqrt{|B|}\, \left( n +1\right) } = z, \quad n\in \mathbb {Z}. \end{aligned}$$
(36)

Solving (36) for u, we get

$$\begin{aligned} {u^\pm _{hom}}_2(z) = \pm \left( \frac{\left( 3 n +2\right) {| B |} \left( 1-\left( \tanh ^{2}\left( \frac{\sqrt{{| B |}}\, \sqrt{n +1}\, z}{\sqrt{2 n +1}}\right) \right) \right) }{\left( 2 n +1\right) D}\right) ^{\frac{2 n +1}{2 n +2}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(37)

The expression for \({v^\pm _{hom}}_2(z)\) is obtained by differentiating (37).

Appendix 2: Explicit expressions for \(K_i, \ L_i\) and \(N_i\).

Here we give values of \(K_i, L_i\) and \(N_i\) more explicitly.

$$\begin{aligned} K_1&= F\int _{-\infty }^{\infty }\frac{{| B |}^{\frac{n +1}{2 n}} \left( n +1\right) ^{\frac{1}{2 n}} \sinh \! \left( \sqrt{{| B |}}\, \sqrt{n}\, z \right) \sin \! \Omega z dz}{\sqrt{n}\, D^\frac{1}{2n} \cosh \! \left( \sqrt{{| B |}}\, \sqrt{n}\, z \right) ^\frac{n}{n+1}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(38)
$$\begin{aligned} L_1&= k\int _{-\infty }^{\infty }\frac{{| B |}^{\frac{n +1}{n}} \left( n +1\right) ^{\frac{1}{n}} \sinh ^{2}\left( \sqrt{{| B |}}\, \sqrt{n}\, z \right) dz}{n D^{\frac{1}{n}} \cosh \! \left( \sqrt{{| B |}}\, \sqrt{n}\, z \right) ^\frac{2(n+1)}{n}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(39)
$$\begin{aligned} N_1&= F_1\int _{-\infty }^{\infty }\frac{\left( n +1\right) ^{\frac{1}{n}} {| B |}^{\frac{2+n}{2 n}} \sinh \! \left( \sqrt{{| B |}}\, \sqrt{n}\, z \right) \sin {\Omega _1z}dz}{\sqrt{n}\, D^{\frac{1}{n}} \cosh \! \left( \sqrt{{| B |}}\, \sqrt{n}\, z \right) ^\frac{n+2}{n}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(40)
$$\begin{aligned} K_2&= F\int _{-\infty }^{\infty }\frac{ {| B |}^{\frac{3 n +2}{2 n +2}} \left( 3 n +2\right) ^{\frac{2 n +1}{2 n +2}} \sinh \! \left( \frac{\sqrt{{| B |}}\, \sqrt{n +1}\, z}{\sqrt{2 n +1}}\right) \sin \! \Omega z dz}{\sqrt{n +1} \left( 2 n +1\right) ^{\frac{n}{2 n +2}}\,D^{\frac{2 n+1}{2 n +2}} \cosh \! \left( \frac{\sqrt{{| B |}}\, \sqrt{n +1}\, z}{\sqrt{2 n +1}}\right) ^\frac{3n+2}{n+1}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(41)
$$\begin{aligned} L_2&= k\int _{-\infty }^{\infty }\frac{ {| B |}^{\frac{3 n +2}{n +1}} \left( 3 n +2\right) ^{\frac{2 n +1}{n +1}} \left( \sinh ^{2}\left( \frac{\sqrt{{| B |}}\, \sqrt{n +1}\, z}{\sqrt{2 n +1}}\right) \right) dz}{\left( n +1\right) \left( 2 n +1\right) ^{\frac{n}{n +1}} D^{\frac{2 n +1}{n +1}} \cosh \! \left( \frac{\sqrt{{| B |}}\, \sqrt{n +1}\, z}{\sqrt{2 n +1}}\right) ^\frac{2(3n+2)}{n+1}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(42)
$$\begin{aligned} N_2&= F_1\int _{-\infty }^{\infty } \frac{ {| B |}^{\frac{5 n +3}{2 n +2}} \left( 3 n +2\right) ^{\frac{2 n +1}{n +1}} \sinh \! \left( \frac{\sqrt{{| B |}}\, \sqrt{n +1}\, z}{\sqrt{2 n +1}}\right) \sin \! \left( \Omega _{1} z \right) }{\sqrt{n +1}\, \left( 2 n +1\right) ^{\frac{3 n +1}{2 \left( n +1\right) }} D^{\frac{2 n +1}{n +1}} \cosh \! \left( \frac{\sqrt{{| B |}}\, \sqrt{n +1}\, z}{\sqrt{2 n +1}}\right) ^\frac{3n+2}{n+1}}, \quad n\in \mathbb {Z}. \end{aligned}$$
(43)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrova, S., Kudryashov, N. Suppression of chaos in the periodically perturbed generalized complex Ginzburg–Landau equation by means of parametric excitation. Opt Quant Electron 55, 903 (2023). https://doi.org/10.1007/s11082-023-05194-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05194-w

Keywords

Navigation