Skip to main content
Log in

A structure of electro-absorption hybrid plasmonic modulator using silver nano-ribbon

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, an electro-absorption modulator based on a hybrid plasmonic structure is designed and analyzed for wavelengths ranging from 1300 to 1800 nm and chemical potentials ranging from 0 to 0.65 eV for graphene. This modulator has a high modulation depth (19.9 dB/µm) in the broad wavelength range of 1300–1800 nm. The proposed modulator comprises three graphene layers and two Hexagonal Boron Nitride (h-BN) layers. Silver nano-ribbons are placed on the structure and inside the silicon layer. The silver nano-ribbons create a spatially confined plasmonic mode along its edge. The edge is covered by graphene sheets, which is isolated by a layer of h-BN. A silver nano-ribbon with sharp rectangular edges can serve as a guide for a spatially confined plasmonic mode. There are two edges involving in the presence of transverse electric field components that contribute to the interaction. Our results show a high amount of light confinement and surface plasmon polaritons. The proposed modulator has a 11.8 dB/µm modulation depth with 1.7 dB/µm loss at 1550 nm and a 19.9 dB/µm modulation depth with 2.9 dB/µm loss at 1300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abdelatty, M.Y., Badr, M.M., Swillam, M.A.: Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides. J. Light. Technol. 36(18), 4198–4204 (2018)

    Article  ADS  Google Scholar 

  • Anzi, L., et al.: Ultra-low contact resistance in graphene devices at the Dirac point. 2D Mater. 5, 25014. https://doi.org/10.1088/2053-1583/aaab96 (2018)

    Article  Google Scholar 

  • Chauhan, D., Mola, G.T., Dwivedi, R.P.: An ultra-compact plasmonic modulator/switch using VO2 and elasto-optic effect”. Optik 201, 163531 (2020). https://doi.org/10.1016/j.ijleo.2019.163531

    Article  ADS  Google Scholar 

  • Chauhan, D., Sbeah, Z., Adhikari, R., Thakur, M.S., Chang, S.H., Dwivedi, R.P.: Theoretical analysis of VO2 filled double rectangular cavity-based coupled resonators for plasmonic active switch/modulator and band pass filter applications. Opt. Mater. 125, 112078 (2022). https://doi.org/10.1016/j.optmat.2022.112078

    Article  Google Scholar 

  • Chauhan, D., Kumar, A., Adhikari, R., Saini, R.K., Chang, S.H., Dwivedi, R.P.: High performance vanadium dioxide based active nano plasmonic filter and switch. Optik 225, 165672 (2021). https://doi.org/10.1016/j.ijleo.2020.165672

    Article  ADS  Google Scholar 

  • Chen, X., et al.: A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Light. Technol. 34(21), 4948–4953 (2016)

    Article  ADS  Google Scholar 

  • Gosciniak, J., Tan, D.T.H.: Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3(1), 1–6 (2013)

    Article  Google Scholar 

  • Hanson, G.W.: Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008). https://doi.org/10.1063/1.2891452

    Article  ADS  Google Scholar 

  • Hao, R., et al.: Highly efficient graphene-based optical modulator with edge plasmonic effect. IEEE Photonics J. 10(3), 1–7 (2018)

    Google Scholar 

  • Hu, X., Zhang, Y., Chen, D., Xiao, X., Yu, S.: Design and modeling of high efficiency graphene intensity/phase modulator based on ultra-thin silicon strip waveguide. J. Light. Technol. 37(10), 2284–2292 (2019)

    Article  ADS  Google Scholar 

  • Huang, B., Lu, W., Liu, Z., Gao, S.: Low-energy high-speed plasmonic enhanced modulator using graphene. Opt. Express 26(6), 7358–7367 (2018)

    Article  ADS  Google Scholar 

  • Karimkhani, H., Vahed, H.: Hybrid broadband optical modulator based on multi-layer graphene structure and silver nano-ribbons. Opt. Quantum Electron (2020). https://doi.org/10.1007/s11082-020-02354-0

    Article  Google Scholar 

  • Karimkhani, H., Vahed, H.: An optical modulator with ridge-type silicon waveguide based on graphene and MoS2 layers and improved modulation depth. Opt. Quant. Electr. 53(5), 1–10 (2021)

    Article  Google Scholar 

  • Karimkhani, H., Vahed, H.: A broadband optical modulator based on rib-type silicon waveguide including graphene and h-BN layers. Optik 254, 168633 (2022). https://doi.org/10.1016/j.ijleo.2022.168633

    Article  ADS  Google Scholar 

  • Karimkhani, H., Attariabad, A., Vahed, H.: High sensitive plasmonic sensor with simple design of the ring and the disk resonators. Opt. Quantum Electron 54(6), 1–13 (2022)

    Article  Google Scholar 

  • Kim, J.-S., Kim, J.T.: Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler. J. Phys. D. Appl. Phys. 49(7), 075101 (2016)

    Article  ADS  Google Scholar 

  • Kim, Y., Kwon, M.-S.: Electroabsorption modulator based on inverted-rib-type silicon waveguide including double graphene layers. J. Opt. 19(4), 045804 (2017). https://doi.org/10.1088/2040-8986/aa5ed4

    Article  ADS  Google Scholar 

  • Koch, U., Hössbacher, C., Niegemann, J., Hafner, C., Leuthold, J.: Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides. IEEE Photonics J. 8(1), 1–13 (2016)

    Article  Google Scholar 

  • Kovacevic, G., Yamashita, S.: Design optimizations for a high-speed two-layer graphene optical modulator on silicon. IEICE Electron. Express 13(14), 20160499 (2016). https://doi.org/10.1587/elex.13.20160499

    Article  Google Scholar 

  • Liu, M., et al.: A graphene-based broadband optical modulator. Nature 474(7349), 64 (2011). https://doi.org/10.1038/nature10067

    Article  ADS  Google Scholar 

  • Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12(3), 1482–1485 (2012)

    Article  ADS  Google Scholar 

  • Mahdy, M.R.C., et al.: Electromagnetic metamaterial-inspired band gap and perfect transmission in semiconductor and graphene-based electronic and photonic structures. Eur. Phys. J. plus 131, 1–9 (2016)

    Article  Google Scholar 

  • Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  • Park, H., et al.: Extremely low contact resistance on graphene through n-Type doping and edge contact design. Adv. Mater. 28(5), 864–870 (2016)

    Article  Google Scholar 

  • Pile, D.F.P., et al.: Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87(6), 61106 (2005). https://doi.org/10.1063/1.1991990

    Article  Google Scholar 

  • Qiu, C., Gao, W., Vajtai, R., Ajayan, P.M., Kono, J., Xu, Q.: Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett. 14(12), 6811–6815 (2014)

    Article  ADS  Google Scholar 

  • Radko, I.P., Bozhevolnyi, S.I., Grigorenko, A.N.: Maximum modulation of plasmon-guided modes by graphene gating. Opt. Express 24(8), 8266–8279 (2016)

    Article  ADS  Google Scholar 

  • Sbeah, Z.A., et al.: GST-based plasmonic biosensor for hemoglobin and urine detection. Plasmonics 17(6), 2391–2404 (2022)

    Article  Google Scholar 

  • Shin, J.-S., Kim, J.T.: Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. Nanotechnology 26(36), 365201 (2015). https://doi.org/10.1088/0957-4484/26/36/365201

    Article  ADS  Google Scholar 

  • Shin, J.-S., Kim, J.-S., Kim, J.T.: Graphene-based hybrid plasmonic modulator. J. Opt. 17(12), 125801 (2015). https://doi.org/10.1088/2040-8978/17/12/125801

    Article  ADS  Google Scholar 

  • Shiramin, L.A., Van Thourhout, D.: Graphene modulators and switches integrated on silicon and silicon nitride waveguide. IEEE J. Sel. Top. Quantum Electron. 23(1), 94–100 (2016)

    Article  Google Scholar 

  • Su, J., He, X., Li, C.: Broadband graphene/hexagonal boron nitride modulators based on a Si 3 N 4 waveguide. JOSA B 37(3), 709–714 (2020)

    Article  ADS  Google Scholar 

  • Vahed, H., Ahmadi, S.S.: Hybrid plasmonic optical modulator based on multi-layer graphene. Opt. Quantum Electron. 52(1), 2 (2020). https://doi.org/10.1007/s11082-019-2118-z

    Article  Google Scholar 

  • Ye, L., Sui, K., Zhang, Y., Liu, Q.H.: Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nano-ribbons for near-infrared applications. Nanoscale 11(7), 3229–3239 (2019)

    Article  Google Scholar 

  • Zarepour, M., Abdipour, A., Moradi, G.: Multilayer graphene on hBN substrate waveguide modulator. IET Optoelectron. 14(4), 176–181 (2020)

    Article  Google Scholar 

  • Zhong, H., et al.: Realization of low contact resistance close to theoretical limit in graphene transistors. Nano Res. 8(5), 1669–1679 (2015)

    Article  Google Scholar 

  • Zhu, Y., et al.: Hybrid plasmonic graphene modulator with buried silicon waveguide. Opt. Commun. 456, 124559 (2020). https://doi.org/10.1016/j.optcom.2019.124559

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in calculating the results, writing the manuscript, and reviewing it.

Corresponding author

Correspondence to Hamid Vahed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimkhani, H., Vahed, H. A structure of electro-absorption hybrid plasmonic modulator using silver nano-ribbon. Opt Quant Electron 55, 894 (2023). https://doi.org/10.1007/s11082-023-05177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05177-x

Keywords

Navigation