Skip to main content
Log in

Comparative study of thermoplasmonic properties in core-shell nanoparticles for heat generation applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

All thermoplasmonic applications have an objective of significantly improving the photothermal conversion of spherical plasmonic nanoparticles, but different core sizes and shell thicknesses provide challenges. In order to examine novel and potential applications, a range of photothermal nanomaterials have been improved with superior light harvesting and photothermal conversion abilities. Here present work described the optical and thermoplasmonic properties of Fe and its oxide and Al and its oxide in spherical core-shell combination with core sizes varying between 20 and 50 nm, and two different shell thicknesses of 5 and 20 nm are investigated by the Mie theory in the water surrounding medium. It is revealed that the LSPR of distinct core-shell nanoparticles could be easily improved by changing the materials and also varying the core sizes as well as the shell thickness. The optical spectra are observed in the range of 230–637 nm wavelengths and merged in the UV-visible-near-infrared region on the electromagnetic (EM) spectrum. Maximum absorption and scattering cross-section are revealed at resonance wavelengths of 442 nm (Cabs≈2.75 × 10− 14 m2), and 337 nm (Csca≈4.95 × 10− 14 m2) for 20 nm shell thickness of Al@ Fe2O3. Further, the maximum temperature at the surface of the nanoparticle is observed at 4.13 0 C of Fe@Fe2O3, and 6.50 0 C of Al@ Fe2O3 with 5 and 20 nm shell thicknesses respectively. The maximum temperature rise and absorption power or heat generation is obtained for iron and its oxide in core-shell i.e. Fe@Fe2O3 NPs in the water environment. Moreover, the order of rising maximum temperature of considered NPs in distinct core-shell is as Fe@Fe2O3 > Al@Fe2O3 > Fe@Al2O3 > Al@Al2O3. Our findings provide a way to analyze the core-shell nanoparticle’s potential in optical imaging, the biomedical field, therapeutics, and thermal nano-heaters under its LSPR characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Akouibaa, A., Masrour, R., Jabar, A., Benhamou, M., Ouarch, M., Derouiche, A.: Study of the optical and thermoplasmonics properties of gold nanoparticles embedded in Al2O3 matrix. Plasmonics. 17, 1157–1169 (2022)

    Article  Google Scholar 

  • Baffou, G., Quidant, R.: Thermo-plasmonics: Using metallic nanostructures as nano‐sources of heat. Laser Photonics Rev. 7, 171–187 (2013)

    Article  ADS  Google Scholar 

  • Baffou, G., Quidant, R.: Thermoplasmonics. In World Scientific Handbook of Metamaterials and Plasmonics: Volume 4: Recent Progress in the Field of Nanoplasmonics. 4, 379–407 (2018)

  • Baffou, G., Quidant, R., Girard, C.: Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett. 94, 153109 (2009)

    Article  ADS  Google Scholar 

  • Baffou, G., Bordacchini, I., Baldi, A., Quidant, R.: Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light: Sci. Appl. 9, 108 (2020)

    Article  Google Scholar 

  • Bansal, A., Sekhon, J.S., Verma, S.S.: Scattering efficiency and LSPR tunability of bimetallic ag, au, and Cu nanoparticles. Plasmonics. 9, 143–150 (2014)

    Article  Google Scholar 

  • Bhatia, P., Verma, S.S., Sinha, M.M.: Tuning the optical properties of Fe-Au core-shell nanoparticles with spherical and spheroidal nanostructures. Phys. Lett. A. 383, 2542–2550 (2019)

    Article  ADS  Google Scholar 

  • Bhatia, P., Verma, S.S., Sinha, M.M.: Nanogap effects on plasmonic properties of dimer. Opt. Quant. Electron. 54, 663 (2022)

    Article  Google Scholar 

  • Chen, Y.S., Frey, W., Kim, S., Kruizinga, P., Homan, K., Emelianov, S.: Silica-coated gold nanorods as photoacoustic signal nano amplifiers. Nano Lett. 11, 348–354 (2011)

    Article  ADS  Google Scholar 

  • Chen, M., He, Y., Wang, X., Hu, Y.: Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating. Sol. Energy. 161, 17–24 (2018)

    Article  ADS  Google Scholar 

  • Chen, M., He, Y., Hu, Y., Zhu, J.: Local heating control of plasmonic nanoparticles for different incident lights and nanoparticles. Plasmonics. 14, 1893–1902 (2019)

    Article  Google Scholar 

  • Chen, Z., Chen, M., Yan, H., Zhou, P., Chen, X.: Enhanced solar thermal conversion performance of plasmonic gold dimer nanofluids. Appl. Therm. Eng. 178, 115561 (2020)

    Article  Google Scholar 

  • Chen, X., Zhou, P., Yan, H., Chen, M.: Systematically investigating solar absorption performance of plasmonic nanoparticles. Energy. 216, 119254 (2021)

    Article  Google Scholar 

  • Cheng, F.Y., Su, C.H., Yang, Y.S., Yeh, C.S., Tsai, C.Y., Wu, C.L., Wu, M.T., Shieh, D.B.: Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials. 26, 729–738 (2005)

    Article  Google Scholar 

  • Chu, M., Shao, Y., Peng, J., Dai, X., Li, H., Wu, Q., Shi, D.: Near-infrared laser light-mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials. 34, 4078–4088 (2013)

    Article  Google Scholar 

  • Dilnawaz, F., Singh, A., Mohanty, C., Sahoo, S.K.: Dual drug-loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials. 31, 3694–3706 (2010)

    Article  Google Scholar 

  • Espinosa, A., Kolosnjaj-Tabi, J., Abou‐Hassan, A., Plan Sangnier, A., Curcio, A., Silva, A.K., Di Corato, R., Neveu, S., Pellegrino, T., Liz‐Marzán, L.M., Wilhelm, C.: Magnetic (hyper) thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Adv. Funct. Mater. 28, 1803660 (2018)

    Article  Google Scholar 

  • Jamil, S., Farooq, W., Ullah, N., Daud Khan, A., Khalil, U.K., Mosavi, A.: Large electromagnetic field enhancement in plasmonic nano ellipse for tunable spaser based applications. Plos one 17, e0263630 (2022)

  • Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldofner, N., Scholz, R., Deger, S., Wust, P., Loening, S.A., Jordan, A.: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperth. 21, 637–647 (2005)

    Article  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and pd. Phys. Rev. B. 9, 5056–5070 (1974)

    Article  ADS  Google Scholar 

  • Katyal, J., Soni, R.K.: Size-and shape-dependent plasmonic properties of aluminium nanoparticles for nanosensing applications. J. Mod. Opt. 60, 1717–1728 (2013)

    Article  ADS  Google Scholar 

  • Khalil, U.K., Farooq, W., Iqbal, J., Kazmi, U.A., Khan, S.Z., Ur Rehman, A.D., A. and, Ayub, S.: Design and optimization of bowtie nanoantenna for electromagnetic field enhancement. Eur. Phys. J. Plus. 136, 1–13 (2021)

    Article  Google Scholar 

  • Khashan, S., Dagher, S., Al Omari, S., Tit, N., Elnajjar, E., Mathew, B., Hilal-Alnaqbi, A.: Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications. Mater. Res. Express. 4, 055701 (2017)

    Article  ADS  Google Scholar 

  • Li, Q., Zhang, W., Zhao, D., Qiu, M.: Photothermal enhancement in core-shell structured plasmonic nanoparticles. Plasmonics. 9, 623–630 (2014)

    Article  Google Scholar 

  • Li, W., Ren, K., Zhou, J.: Aluminum-based localized surface plasmon resonance for biosensing. TRAC Trends Anal. Chem. 80, 486–494 (2016)

    Article  Google Scholar 

  • Liu, G.L., Kim, J., Lu, Y.U., Lee, L.P.: Optofluidic control using photothermal nanoparticles. Nat. Mater. 5, 27–32 (2006)

    Article  ADS  Google Scholar 

  • Lu, Z., Wang, Y., Ruan, X.: Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit. Phys. Rev. B. 93, 064302 (2016)

    Article  ADS  Google Scholar 

  • Ma, D., Tuersun, P., Cheng, L., Zheng, Y., Abulaiti, R.: PyMieLab_V1. 0: A software for calculating the light scattering and absorption of spherical particles. Heliyon 8, e11469 (2022)

  • Malitson, I.H., Murphy, F.V., Rodney, W.S.: Refractive index of synthetic sapphire. J. Opt. Soc. Am. 48, 72–73 (1958)

    Article  Google Scholar 

  • Mathewson, A.G., Myers, H.P.: Absolute values of the optical constants of some pure metals. Phys. Scr. 4, 291 (1971)

    Article  ADS  Google Scholar 

  • Meng, L., Yu, R., Qiu, M., Garcia de Abajo, F.J.: Plasmonic nano-oven by concatenation of multishell photothermal enhancement. ACS Nano. 11, 7915–7924 (2017)

    Article  Google Scholar 

  • Oka, C., Ushimaru, K., Horiishi, N., Tsuge, T., Kitamoto, Y.: Biodegradable and magnetic core-shell composite particles prepared by emulsion solvent diffusion method. Jpn. J. Appl. Phys. 55, 02BE01 (2015)

    Article  Google Scholar 

  • Quail, J.C., Rako, J.G., Simon, H.J.: Long-range surface-plasmon modes in silver and aluminium films. Opt. Lett. 8, 377–379 (1983)

    Article  ADS  Google Scholar 

  • Querry, M.R.: Optical Constants by the University of Missouri-Kansas City. Defense Technical Information Center (1985)

  • Ray, K., Chowdhury, M.H., Lakowicz, J.R.: Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Anal. Chem. 79, 6480–6487 (2007)

    Article  Google Scholar 

  • Richardson, H.H., Hickman, Z.N., Govorov, A.O., Thomas, A.C., Zhang, W., Kordesch, M.E.: Thermo optical properties of gold nanoparticles embedded in ice: Characterization of heat generation and melting. Nano Lett. 6, 783–788 (2006)

    Article  ADS  Google Scholar 

  • Sharma, S.K., Shrivastava, N., Rossi, F., Thanh, N.T.K.: Nanoparticles-based magnetic and photo-induced hyperthermia for cancer treatment. Nano Today. 29, 100795 (2019)

    Article  Google Scholar 

  • Taguchi, A., Hayazawa, N., Furusawa, K., Ishitobi, H., Kawata, S.: Deep-UV tip‐enhanced Raman scattering. Journal of Raman Spectroscopy: An International Journal for Original Work in all aspects of Raman Spectroscopy, including higher order processes, and also Brillouin and Rayleigh Scattering. 40, 1324–1330 (2009)

  • Un, I.W., Sivan, Y.: Size-dependence of the photothermal response of a single metal nanosphere. J. Appl. Phys. 126, 173103 (2019)

    Article  ADS  Google Scholar 

  • Xie, W., Guo, Z., Gao, F., Gao, Q., Wang, D., Liaw, B.S., Cai, Q., Sun, X., Wang, X., Zhao, L.: Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 8, 3284 (2018)

    Article  Google Scholar 

  • Xu, H.: Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field. Phys. Rev. B. 72, 073405 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like thank to P. Tuersun and his team for using their PyMieLab_V1.0 software.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PB: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Original draft; Review & Editing.

Corresponding author

Correspondence to Pradeep Bhatia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The ethical issues, including plagiarism, informed consent, misconduct, data fabrication, and double publication have been completely observed by the author.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, P. Comparative study of thermoplasmonic properties in core-shell nanoparticles for heat generation applications. Opt Quant Electron 55, 928 (2023). https://doi.org/10.1007/s11082-023-05162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05162-4

Keywords

Navigation