Skip to main content

Advertisement

Log in

Investigation of the effect of temperature on opto-thermal parameters of glycerol and ethylene glycol using laser thermal lens spectroscopy

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

One of the important applications of the photothermal effect is laser thermal lens spectroscopy. Using this technique, some opto-thermal parameters of materials such as thermal diffusivity, thermo-optic coefficient (TOC), thermal conductivity, etc. can be accurately measured. In this experimental study the thermal diffusivity of butanol and propanol were measured. The accuracy of our experimental setup was confirmed by comparing with the reference. Then, the experiments were repeated for glycerol and ethylene glycol and measured the thermal diffusivity and thermal conductivity of these samples. A reliable agreement between these results and reference values was observed. Finally, thermal conductivity of glycerol and ethylene glycol at various temperatures was studied. These results show that thermal conductivity increases (from 0.2805 to 0.2865 W/mK for glycerol and from 0.246 to 0.275 W/mK for ethylene glycol) with increasing temperature (from 25 to 90 °C). Also, TOC and \(\frac{dn}{dQ}\) of these samples were measured at the beam waist of 30 ± 0.3 µm and laser power of 100 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  • Afrand, M.: Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Therm. Eng. 110, 1111–1119 (2017)

    Google Scholar 

  • Akilu, S., Baheta, A.T., Minea, A.A., Sharma, K.V.: Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol based nanofluids. Int. Commun. Heat Mass Transf. 88, 245–253 (2017)

    Google Scholar 

  • Akilu, S., Baheta, A.T., Said, M.A.M., Minea, A.A., Sharma, K.V.: Properties of glycerol and ethylene glycol mixture based SiO2–CuO/C hybrid nanofluid for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 179, 118–128 (2018)

    Google Scholar 

  • Assael, M.J., Charitidou, E., Karagiannidis, L.: The thermal conductivity of n-hexadecane+ethanol and n-decane+butanol mixtures. Int. J. Thermophys. 12, 491–500 (1991)

    ADS  Google Scholar 

  • Balderas-Lo’pez, J.A., Mandelis, A., Garcia, J.A.: Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev. Sci. Instrum. 71(7), 2933–2937 (2000)

    ADS  Google Scholar 

  • Baroncini, C., Latini, G., Pierpaoli, P.: Thermal conductivity of organic liquid binary mixtures: measurements and prediction method. Int. J. Thermophys. 5, 387–401 (1984)

    ADS  Google Scholar 

  • Beaton, C.F., Hewitt, G.F.: Physical Property Data for the Design Engineer. Hemisphere Publishing Co, Washington (1988)

    Google Scholar 

  • Bialkowski, S.E.: Photothermal Spectroscopy Methods for Chemical Analysis. Wiley, Hoboken (1996)

    Google Scholar 

  • BohneS, Dirk: FischerE obermeier, thermal, conductivity, density, viscosity, and prandtl-numbers of ethylene glycol-water mixtures. Phys. Chem. Chem. Phys. 88(8), 739–742 (1984)

    ADS  Google Scholar 

  • Bombelli, Paolo, Howe, Christopher J., Bertocchini, Federica: Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr. Biol. 27(8), 292–293 (2017)

    Google Scholar 

  • Cao, Z., Jiang, L., Wang, S., Wang, M., Liu, D., Wang, P., Lu, Y.: All-glass extrinsic Fabry-Perot interferometer thermo-optic coefficient sensor based on a capillary bridged two fiber ends. Appl. Opt. 54(9), 2371–2375 (2015)

    ADS  Google Scholar 

  • Ciriminna, R., Pagliaro, M.: One-pot homogeneous and heterogeneous oxidation of glycerol to ketomalonic acid mediated by TEMPO. Adv. Synth. Catal. 345(3), 383–388 (2003)

    Google Scholar 

  • Dams, R.I., Viana, M.B., Guilherme, A.A., Silva, C.M., Santos, D., André, B., Angenent, L.T., Santaella, S.T., Leitão, R.C.: Production of medium-chain carboxylic acids by anaerobic fermentation of glycerol using a bioaugmented open culture. Biomass Bioenergy 118, 1–7 (2018)

    Google Scholar 

  • Deusa, W.B., Venturaa, M., Silvaa, J.R., Andradea, L.H.C., Catundab, T., Limaa, S.M.: Monitoring of the ester production by near-near infrared thermal lens spectroscopy. Fuel 253, 1090–1096 (2019)

    Google Scholar 

  • Eichler, H., Salje, G., Stahl, H.: Thermal diffusion measurements using spatially periodic temperature distributions induced by laser light. J. Appl. Phys. 44, 12 (1973)

    Google Scholar 

  • Elert, G.: Viscosity Phys. Hypertextbook 54, 58–69 (2007)

    Google Scholar 

  • El-Kashef, H.: The necessary requirements imposed on polar dielectric laser dye solvents. Phys. B 279, 295–301 (2000)

    ADS  Google Scholar 

  • Franko, M., Tran, C.D.: Thermal lens spectroscopy. Encycl. Anal. Chem. 56, 1249–1279 (2010)

    Google Scholar 

  • Franko, M., et al.: Recent progress and applications of thermal lens spectrometry and photothermal beam deflection techniques in environmental sensing. Sensors 23(1), 472 (2023)

    ADS  Google Scholar 

  • Gordon, J.P., Leite, R.C.C., Moore, R.S., Porto, S.P.S., Whinnery, J.R.: Long-transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36(1), 3–8 (1965)

    ADS  Google Scholar 

  • Hassani, S., Dackermann, U.: A systematic review of advanced sensor technologies for non-destructive testing and structural health monitoring. Sensors 23(4), 2204 (2023)

    ADS  Google Scholar 

  • Hollis, J.M., Lovas, F.J., Jewell, P.R., Coudert, L.H.: Interstellar Antifreeze Ethyl. Glycol Astrophys. J. 571(1), L59–L62 (2002)

    ADS  Google Scholar 

  • Huang, L., Liu, L.-S.: Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. J. Food Eng. 95, 179–185 (2009)

    Google Scholar 

  • Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, 4th edn. John Wiley & Sons, New York (1996)

    Google Scholar 

  • Jacinto, C., Catunda, T.: June High-sensitivity absorption coefficients measurements using thermal lens spectrometry. J. Phys. IV Proc. EDP Sci. 125, 229–232 (2005)

    Google Scholar 

  • Johnson, Duane T., Taconi, Katherine A.: The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Progr 26(4), 338–348 (2007)

    Google Scholar 

  • Kaviany, M.: Principles of Heat Transfer. Wiley, New York (2002)

    MATH  Google Scholar 

  • Lide, D. R. (ed).: CRC Handbook of Data on Organic Compounds (3rd ed.) Boca Raton. CRC Press, Florida (1994).

  • Liu, M.: Influence of thermal conductivity on photothermal lens spectroscopy, thermochim. Acta 672, 126–132 (2019)

    Google Scholar 

  • Ma, Y., Rafał, L., Razeghi, M., Frank, K.: Tittel QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express 21, 1008–1019 (2013)

    ADS  Google Scholar 

  • Ma, Y., He, Y., Tong, Y., Xin, Yu., Frank, K.: Tittel Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection Opt. Express 26(24), 32103–32110 (2018)

    ADS  Google Scholar 

  • Melero, J.A., van Grieken, R., Morales, G., Paniagua, M.: Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Energy Fuels 21(3), 1782–1791 (2007)

    Google Scholar 

  • Meng, B., Liu, J., Wang, L.: Oligo (ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym. Chem. 11(7), 1261–1270 (2020)

    Google Scholar 

  • Mohebbifar, M.R.: The signal-to-noise ratio measurement in chloroform detection in the presence of krypton buffer gas by laser photoacoustic method. Belgorod State Univ. Sci. Bull. 51(3), 444–450 (2019)

    Google Scholar 

  • Mohebbifar, M.R.: Optical measurement of gas vibrational-translational relaxation time with high accuracy by the laser photo-acoustic set-up. Microchem. J. 164, 106040 (2021)

    Google Scholar 

  • Mohebbifar, M.R.: Investigation of thermal lens performance of rhodamine 6G and rhodamine B at different concentration using pump/probe laser thermal lens spectroscopy. Optik 242(1–8), 166902 (2021b)

    ADS  Google Scholar 

  • Mohebbifar, M.R.: Accurate measurement of opto-thermal parameters of trichloromethane-alcohol mixtures by laser thermal lens spectroscopy. Int. J. Thermophys. 42(8), 1–12 (2023)

    Google Scholar 

  • Mohebbifar, M.R., Mohammadi-Manesh, E.: Experimental and numerical study of laser energy effect on the thermal lensing behavior of ethyl acetate and ethanol by thermal lens spectroscopy. Optik 228, 166149 (2021)

    ADS  Google Scholar 

  • Murshed, S.M.S.: Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transf. Eng. 33(8), 722–731 (2012)

    ADS  Google Scholar 

  • Murshed, S.M.S., Leong, K.C., Yang, C.: Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique. J. Phys. D Appl. Phys. 39, 5316–5322 (2006)

    ADS  Google Scholar 

  • Navas, M.J., Jimenez, A.M.: Thermal lens spectrometry as analytical tool. Crit. Rev. Anal. Chem. 33(2), 77–88 (2003)

    Google Scholar 

  • Numan, N.H., Hussein, K., Sadkhan, A.K., Al-Nuwab, M.A.: Characterization of some natural oils used for medical purposes by ultraviolet-visible spectroscopy. J. College Educ. 25(105), 36–44 (2019)

    Google Scholar 

  • Ogiwara, K., Arai, Y., Saito, S.: Chem. J. Eng. Jpn. 15, 335–342 (1982)

    Google Scholar 

  • Raznjevic, K.: Handbook of Thermodynamic Tables and Charts. Hemisphere Pub Co, Washington (1976)

    Google Scholar 

  • Segur, J.B., Oberstar, H.E.: Viscosity Glycerol Aqueous Solut. Indust. Eng. Chem. 43(9), 2117–2120 (1951)

    Google Scholar 

  • Seidel, B.S., Faubel, W.N., Ache, H.J.: Thermal lens detector system for capillary electrophoresis. J. Biomed. Opt. 2(3), 326–331 (1997)

    ADS  Google Scholar 

  • Sharifpura, M., Tshimangaa, N., Meyera, J.P., Manca, O.: Experimental investigation and model development for thermal conductivity of α-Al2O3-glycerol nanofluids. Int. Commun. Heat Mass Transf. 85, 12–22 (2017)

    Google Scholar 

  • Shekhovtsov, S.V., Bulakhova, N.A., Tsentalovich, Y.P., Zelentsova, E.A., Meshcheryakova, E.N., Poluboyarova, T.V., Berman, D.I.: Metabolomic analysis reveals that the moor frog rana arvalis uses both glucose and glycerol as cryoprotectants. Animals 12(10), 1275–1286 (2022)

    Google Scholar 

  • Shen, J., Lowe, R.D., Snook, R.D.: A model for cw laser-induced mode-mismatched dual beam thermal lens spectrometry. Chem. Phys. 165, 385–396 (1992)

    Google Scholar 

  • Snook, R.D., Lowe, R.D.: Thermal lens spectrometry. Rev. Analyst 120(8), 2051–2068 (1995)

    ADS  Google Scholar 

  • Touloukian, Y.S., Powell, R.W., Ho, C.Y., Nicolau, M.C.: Thermal Diffusivity. IFI/Plenum, New York (1973)

    Google Scholar 

  • Weng, S., Pei, Li., Wang, J., Ning, T., Li, J.: High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res. 5(2), 103–107 (2017)

    Google Scholar 

  • Yang, R., Yong-Sen, Yu., Xue, Y., Chen, C., Wang, C., Zhu, F., Zhang, B.-L., Chen, Q.-D., Sun, H.-B.: A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber. IEEE Photonics Technol. Lett. 25(9), 829–832 (2013)

    ADS  Google Scholar 

  • Yang, J., Yang, Yu., Wu, W.-M., Zhao, J., Jiang, L.: Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 48(23), 13776–13784 (2014)

    ADS  Google Scholar 

  • Zhang, S., Liu, Q., Fan, G., Li, F.: Highly-dispersed copper-based catalysts from Cu–Zn–Al layered double hydroxide precursor for gas-phase hydrogenation of dimethyl oxalate to ethylene glycol. Catal. Lett. 142, 1121–1127 (2012)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Nader Shokoufi, associate professor of analytical chemistry department at chemistry & chemical engineering research center of Iran (CCERCI) for the helpful discussions and providing laboratory equipment (laser spectroscopy lab) in this center. Also, the authors would like to thank Dr. Mohammad Almasi, associate professor of Physical Chemistry at Malayer University for the helpful discussions about uncertainty analysis.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Z.S.K., E.M.-M. and M.R.M. contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript. Also, the authors would like to thank Dr. M.A., associate professor of Physical Chemistry at Malayer University for the valuable discussions about uncertainty analysis.

Corresponding author

Correspondence to M. R. Mohebbifar.

Ethics declarations

Conflict of interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript. The following authors have affiliations with organizations with direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safi Keykeleh, Z., Mohammadi-Manesh, E. & Mohebbifar, M.R. Investigation of the effect of temperature on opto-thermal parameters of glycerol and ethylene glycol using laser thermal lens spectroscopy. Opt Quant Electron 55, 833 (2023). https://doi.org/10.1007/s11082-023-05114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05114-y

Keywords

Navigation