Skip to main content
Log in

Slow light in a double quantum dot system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The density matrix theory models the slow light in a waveguide containing a double quantum dot system. This work considers the waveguide and material dispersions, the wetting layer–quantum dot (WL–QD) transitions, and the orthogonalized plane wave between them. These considerations are not taken else. The optical fields between WL–QD states do not increase the slowing down. Under increasing the probe field by one order, the slowdown factor \((S)\) is increased by three orders while the susceptibility is by two orders, referring to the importance of the probe field. Tunneling is more effective in controlling susceptibility than probe field. This result predicts a new generation of all-optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used are placed in the text of this work. All data generated or analyzed during this study are included in this work.

References

  • Abdullah, M., Mohammed Noori, F.T., Al-Khurasan, A.H.: Terahertz emission in ladder plus Y-configurations in double quantum dot structure. Appl. Opt. 16, 5186–5192 (2015)

    Article  ADS  Google Scholar 

  • Akram, H., Al-Khursan, A.H.: Second-order nonlinearity in ladder plus-Y configuration in double quantum dot structure. Appl. Opt. 55, 9866–9874 (2016)

    Article  ADS  Google Scholar 

  • Akram, H., Abdullah, M., Al-Khursan, A.H.: Energy absorbed from double quantum dot-metal nanoparticle hybrid system. Sci. Rep. 12, 21495 (2022a)

    Article  ADS  Google Scholar 

  • Akram, H., Abdullah, M., Al-Khursan, A.H.: Double quantum dot-metal nanoparticle systems under strong coupling. J. Appl. Phys. 132, 043102 (2022b)

    Article  ADS  Google Scholar 

  • Al-Ameri, H.H., Abdullah, M., Al-Khursan, A.H.: Entanglement in ladder-plus-Y-double quantum dot structure via entropy. Appl. Opt. 58, 369–382 (2019)

    Article  ADS  MATH  Google Scholar 

  • Al-Husseini, H., Al-Khursan, A.H., Al-Dabagh, S.Y.: III-N QD lasers. Open Nanosci. J. 3, 1–11 (2009)

    Article  ADS  Google Scholar 

  • Al-Khakani, M.K., Al-Mossawi, K.H., Al-Khursan, A.H.: Slow light using InGaAsP semiconductor quantum dot system. Phys. Express 1, 199–207 (2011)

    Google Scholar 

  • Al-Nashy, B., Amin, S.M.M., Al-Khursan, A.H.: Kerr dispersion in a Y-configuration quantum dot system. J. Opt. 16, 105205 (2014)

    Article  ADS  Google Scholar 

  • Al-Toki, H.G., Al-Khursan, A.H.: Negative refraction in the double quantum dot system. Opt. Quantum Electron. 52, 467 (2020)

    Article  Google Scholar 

  • Asada, M., Kameyama, A., Suematsu, Y.: Gain and intervalence band absorption in quantum-well lasers. IEEE J. Quantum Electron. 7, 745–753 (1984)

    Article  ADS  Google Scholar 

  • Ben Ezra, Y., Lembrikov, B.I., Haridim, M.: Specific features of XGM in QD-SOA. IEEE J. Quantum Electron. 43, 730–737 (2007)

    Article  ADS  Google Scholar 

  • Chang-Hasnain, C.J., Chuang, S.L.: Slow and fast in semiconductor quantum-well and quantum-dot devices. IEEE J. Lightwave Technol. 24, 4642–4654 (2006)

    Article  ADS  Google Scholar 

  • Chang-Hasnain, C.J., Ku, P.C., Kim, J., Chuang, S.L.: Variable optical buffer using slow light in semiconductor nanostructures. IEEE Proc. IEEE 91, 1884–1896 (2003)

    Article  Google Scholar 

  • Chang, C.-C., Chen, Y.-H., Chen, G.-Y., Lin, L.: Manipulating quantum interference of dressed photon fields. Opt. Express 30, 18156–18167 (2022)

    Article  ADS  Google Scholar 

  • Chuang, S.L.: Physics of optoelectronic devices. Wiley, NewYork (1995)

    Google Scholar 

  • Flayyih, A.H., Al-Khursan, A.H.: Integral gain in quantum dot semiconductor optical amplifiers. Superlattices Microstruct. 62, 81–87 (2013)

    Article  ADS  Google Scholar 

  • Hadi, S., Al-Khursan, A.H.: Tunability of solar cell with double quantum dot structure. Micro Nanostruct. 167, 207254 (2022)

    Article  Google Scholar 

  • Kim, J., Chuang, S.L.: Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J. Quantum Electron. 9, 942–952 (2006)

    Article  ADS  Google Scholar 

  • Kim, J., Chuang, S.L., Ku, P.C., Chang-Hasnain, C.J.: Slow light using semiconductor quantum dots. J. Phys. Condens. Matter 16, S3727–S3735 (2004)

    Article  ADS  Google Scholar 

  • Ku, P.C., Chang-Hasnain, C.J., Chuang, S.L.: Variable semiconductor all-optical buffer. IEE Electron. Lett. 38, 1581–1583 (2002)

    Article  ADS  Google Scholar 

  • Ku, P.C., Chang-Hasnain, C.J., Kim, J., Chuang, S.L.: Semiconductor all-optical buffer using semiconductor quantum dot in resonator structures. OFC 1, 76–78 (2003)

    Google Scholar 

  • Ku, P.C., Chang-Hasnain, C.J., Chuang, S.L.: Slow light in semiconductor heterostructures. J. Phys. d: Appl. Phys. 40, 93–107 (2007)

    Article  ADS  Google Scholar 

  • Mi, Z., Bhattacharya, P.: Analysis of the linewidth-enhancement factor of long-wavelength tunnel-injection quantum-dot lasers. IEEE J. Quantum Electron. 34, 363–369 (2007)

    Article  ADS  Google Scholar 

  • Michael, S., Chow, W.W., Schneider, H.C.: Group-velocity slowdown in a double quantum dot molecule. Phys. Rev. B 88, 125305 (2013)

    Article  ADS  Google Scholar 

  • Nielsen, T.R., Lavrinenko, A.V., Mork, J.: Slow light based on material and waveguide dispersion. AIP Conf. Proc. 1176, 75–77 (2009)

    Article  ADS  Google Scholar 

  • Rehman, E., Al-Khursan, A.H.: All-optical processes in double quantum dot structure. Appl. Opt. 55, 7337–7344 (2016)

    Article  ADS  Google Scholar 

  • Tarasov, G.G., Zhuchenko, Y.Z., Lisitsa, M.P., Mazur, Y.I., Wang, Z.M., Salamo, G.J., Warming, T., Bimberg, D., Kissel, H.: Optical detection of asymmetric quantum-dot molecules in double-layer InAs/GaAs structures. Semiconductors 40, 79–83 (2006)

    Article  ADS  Google Scholar 

  • Üstün, K., Kurt, H.: Slow light structure with enhanced delay–bandwidth product. J. Opt. Soc. Am. B 29, 2403–2409 (2012a)

    Article  ADS  Google Scholar 

  • Üstün K., Kurt, H.: Delay bandwidth product enhanced slow light in photonic crystal waveguides. IEEE -ICTONb We.C6.5

  • Varmazyari, V., Habibiyan, H., Ghafoorifard, H.: Slow light with high normalized delay bandwidth product in photonic crystal line defect waveguide. SOP Trans. Appl. Phys. 1, 55–61 (2014)

    Article  Google Scholar 

  • Villas-Boas, J.M., Govorov, A.O., Ulloa, S.E.: Coherent control of tunneling in a quantum dot molecule. Phys. Rev. B 69, 125342 (2004)

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare no funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally.

Corresponding author

Correspondence to Amin Habbeb Al-khursan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The work is not sent to any other site.

Consent to participate

All the Authors Consent to participate.

Consent for publication

All the Authors Consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachim, F.K., Al-Nashy, B.O. & Al-khursan, A.H. Slow light in a double quantum dot system. Opt Quant Electron 55, 831 (2023). https://doi.org/10.1007/s11082-023-05093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05093-0

Keywords

Navigation