Skip to main content
Log in

Disentanglement induced by combined effects of polarization mode dispersion and polarization-dependent loss in optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

To build long-range quantum networks based on fiber channels, there is a growing demand for a generic method to describe the decoherence of polarization-entangled states in fiber environments. In this paper, we propose a theoretical model that describes the decoherence induced by the combined effects of polarization mode dispersion (PMD) and polarization-dependent loss (PDL). Consider a pair of polarization-entangled photons traveling along different optical paths and passing through PMD and PDL elements in arbitrary order. The density matrix and the concurrence of the output state are expressed in terms of parameters related to the orientation and magnitude of the PMD and PDL vectors. We obtain the upper bound on the remaining entanglement after EPR pairs have traversed the general fiber channels for a specific range of parameters. We show that it is possible to achieve nonlocal compensation of simultaneous PMD and PDL to force the output state restore original entanglement. By comparing the theoretical values of concurrence with the data from previous experiments, we prove the efficiency of the model basically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Altepeter, J.B., Hadley, P.G., Wendelken, S.M., Berglund, A.J., Kwiat, P.G.: Experimental investigation of a two-qubit decoherence-free subspace. Phys. Rev. Lett. 92(14), 147901 (2004)

    Article  ADS  Google Scholar 

  • Antonelli, C., Shtaif, M., Brodsky, M.: Sudden death of entanglement induced by polarization mode dispersion. Phys. Rev. Lett. 106(8), 080404 (2011)

    Article  ADS  Google Scholar 

  • Berglund, A.J.: Quantum coherence and control in one- and two-photon optical systems. Physics (2000)

  • Chen, L., Zhang, Z., Bao, X.: Combined PMD-PDL effects on BERs in simplified optical systems: an analytical approach. Opt. Express 15(5), 2106–2119 (2007)

    Article  ADS  Google Scholar 

  • Chen, J.P., Zhang, C., Liu, Y., et al.: Twin-field quantum key distribution over 511 km optical fiber linking two distant metropolitans. arXiv preprint arXiv:2102.00433 (2021)

  • Damask, J.N.: Polarization Optics in Telecommunications. Springer Science & Business Media, Berlin (2004)

    Google Scholar 

  • Galtarossa, A., Menyuk, C.R.: Polarization Mode Dispersion. Springer, New York (2005)

    Book  Google Scholar 

  • Gisin, N., Huttner, B.: Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers. Opt. Commun. 142(1–3), 119–125 (1997)

    Article  ADS  Google Scholar 

  • Gordon, J.P., Kogelnik, H.: PMD fundamentals: polarization mode dispersion in optical fibers. Proc. Natl. Acad. Sci. 97(9), 4541–4550 (2000)

    Article  ADS  Google Scholar 

  • Huttner, B., Geiser, C., Gisin, N.: Polarization-induced distortions in optical fiber networks with polarization-mode dispersion and polarization-dependent losses. IEEE J. Sel. Top. Quantum Electron. 6(2), 317–329 (2000)

    Article  ADS  Google Scholar 

  • Kirby, B.T., Jones, D.E., Brodsky, M.: Effect of polarization dependent loss on the quality of transmitted polarization entanglement. J. Light. Technol. 37(1), 95–102 (2018)

    Article  Google Scholar 

  • Mecozzi, A., Shtaif, M.: The statistics of polarization-dependent loss in optical communication systems. IEEE Photon. Technol. Lett. 14(3), 313–315 (2002)

    Article  ADS  Google Scholar 

  • Riccardi, G., Antonelli, C., Jones, D.E., Brodsky, M.: Simultaneous decoherence and mode filtering in quantum channels: theory and experiment. Phys. Rev. Appl. 15(1), 014060 (2021)

    Article  ADS  Google Scholar 

  • Ruan, L., Kirby, B.T., Brodsky, M., Win, M.Z.: Efficient entanglement distillation for quantum channels with polarization mode dispersion. Phys. Rev. A 103(3), 032425 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Shtaif, M., Rosenberg, O.: Polarization-dependent loss as a waveform-distorting mechanism and its effect on fiber-optic systems. J. Light. Technol. 23(2), 923–930 (2005)

    Article  ADS  Google Scholar 

  • Shtaif, M., Antonelli, C., Brodsky, M.: Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons. Opt. Express 19(3), 1728–1733 (2011)

    Article  ADS  Google Scholar 

  • Steinkamp, A., Vorbeck, S., Voges, E.I., et al.: Polarization mode dispersion and polarization dependent loss in optical fiber systems. Proc. SPIE Int. Soc. Opt. Eng. 241, 280–289 (2004)

    Google Scholar 

  • Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  • Yin, J., Cao, Y., Li, Y.H.: Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017)

    Article  Google Scholar 

  • Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed" X" states. arXiv preprint arXiv:quant-ph/0503089 (2005)

Download references

Acknowledgements

The author wishs to express their gratitude to EditSprings for the expert linguistic services provided.

Funding

This work was supported by National Key R&D Program of China [Grant Numbers No. 2017YFE0301303].

Author information

Authors and Affiliations

Authors

Contributions

YL finished theoretical calculations, figure plotting and manuscript writing by himself.

Corresponding author

Correspondence to Yiwen Liu.

Ethics declarations

Conflict of interest

The author has received research support from National Key R&D Program of China.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of the density matrix in the configuration where the PDL element is preceding the PMD element

Appendix: Derivation of the density matrix in the configuration where the PDL element is preceding the PMD element

An alternative configuration to that discussed in the main text is that the fiber channel can be decomposed into a PDL element preceding a PMD element. The evolution of the waveform is illustrated in Fig. 

Fig. 5
figure 5

The configuration where the polarization state passes through the PDL element first and then through the PMD element

5:

In this case, we need to introduce the coefficients \(a^{\prime}\), \(b^{\prime}\) to describe the relationship between the least- and most-attenuated states,\(\left| {u_{A} } \right\rangle\), \(\left| {u_{A}^{\prime } } \right\rangle\) and \(\left| {u_{B} } \right\rangle\), \(\left| {u_{B}^{\prime } } \right\rangle\), and the basis of the input states:

$$\begin{gathered} a\prime = \left\langle {{u_{A} }} \mathrel{\left | {\vphantom {{u_{A} } {s_{A} }}} \right. \kern-0pt} {{s_{A} }} \right\rangle \left\langle {{u_{B} }} \mathrel{\left | {\vphantom {{u_{B} } {s_{B} }}} \right. \kern-0pt} {{s_{B} }} \right\rangle + \left\langle {{u_{A} }} \mathrel{\left | {\vphantom {{u_{A} } {s_{A}^{\prime } }}} \right. \kern-0pt} {{s_{A}^{\prime } }} \right\rangle \left\langle {{u_{B} }} \mathrel{\left | {\vphantom {{u_{B} } {s_{B}^{\prime } }}} \right. \kern-0pt} {{s_{B}^{\prime } }} \right\rangle ,b\prime = \left\langle {{u_{A} }} \mathrel{\left | {\vphantom {{u_{A} } {s_{A} }}} \right. \kern-0pt} {{s_{A} }} \right\rangle \left\langle {{u_{B}^{\prime } }} \mathrel{\left | {\vphantom {{u_{B}^{\prime } } {s_{B} }}} \right. \kern-0pt} {{s_{B} }} \right\rangle + \left\langle {{u_{A} }} \mathrel{\left | {\vphantom {{u_{A} } {s_{A}^{\prime } }}} \right. \kern-0pt} {{s_{A}^{\prime } }} \right\rangle \left\langle {{u_{B}^{\prime } }} \mathrel{\left | {\vphantom {{u_{B}^{\prime } } {s_{B}^{\prime } }}} \right. \kern-0pt} {{s_{B}^{\prime } }} \right\rangle \hfill \\ a^{\prime \, * } = \left\langle {{u_{A}^{\prime } }} \mathrel{\left | {\vphantom {{u_{A}^{\prime } } {s_{A} }}} \right. \kern-0pt} {{s_{A} }} \right\rangle \left\langle {{u_{B}^{\prime } }} \mathrel{\left | {\vphantom {{u_{B}^{\prime } } {s_{B} }}} \right. \kern-0pt} {{s_{B} }} \right\rangle + \left\langle {{u_{A}^{\prime } }} \mathrel{\left | {\vphantom {{u_{A}^{\prime } } {s_{A}^{\prime } }}} \right. \kern-0pt} {{s_{A}^{\prime } }} \right\rangle \left\langle {{u_{B}^{\prime } }} \mathrel{\left | {\vphantom {{u_{B}^{\prime } } {s_{B}^{\prime } }}} \right. \kern-0pt} {{s_{B}^{\prime } }} \right\rangle , - b^{\prime * } = \left\langle {{u_{A}^{\prime } }} \mathrel{\left | {\vphantom {{u_{A}^{\prime } } {s_{A} }}} \right. \kern-0pt} {{s_{A} }} \right\rangle \left\langle {{u_{B} }} \mathrel{\left | {\vphantom {{u_{B} } {s_{B} }}} \right. \kern-0pt} {{s_{B} }} \right\rangle + \left\langle {{u_{A}^{\prime } }} \mathrel{\left | {\vphantom {{u_{A}^{\prime } } {s_{A}^{\prime } }}} \right. \kern-0pt} {{s_{A}^{\prime } }} \right\rangle \left\langle {{u_{B} }} \mathrel{\left | {\vphantom {{u_{B} } {s_{B}^{\prime } }}} \right. \kern-0pt} {{s_{B}^{\prime } }} \right\rangle \hfill \\ \end{gathered}$$
(29)

\(a\), \(b\) and \(a^{\prime}\), \(b^{\prime}\) are coefficients describing the relative orientation of the eigenstates and the basis of the input state. They satisfy the following relations:

$$a\prime = \frac{{a + a^{*} + b - b^{*} }}{2},\,a^{\prime \,*} = \frac{{a + a^{*} + b^{*} - b}}{2},\,b\prime = \frac{{a - a^{*} - b - b^{*} }}{2},\, - b^{\prime \, * } = \frac{{a - a^{*} + b + b^{*} }}{2}$$
(30)

After repeating the calculations of the main text, the density matrix elements of the output state in the basis

$${\mathbb{R}}^{\prime} = \left\{ {\left| 1 \right\rangle \equiv \left| {p_{A} } \right\rangle \left| {p_{B} } \right\rangle ,\left| 2 \right\rangle \equiv \left| {p^{\prime}_{A} } \right\rangle \left| {p_{B} } \right\rangle ,\left| 3 \right\rangle \equiv \left| {p_{A} } \right\rangle \left| {p^{\prime}_{B} } \right\rangle ,4 \equiv \left| {p^{\prime}_{A} } \right\rangle \left| {p^{\prime}_{B} } \right\rangle } \right\}$$
(31)

can be obtained as:

$$\begin{gathered} \rho_{11} = \frac{{c^{{\prime}{2}} }}{4}\left[ {\left| {a^{\prime}} \right|^{2} - \left| {b^{\prime}} \right|^{2} + \left| {a^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} { + }\omega_{0} \eta_{B} } \right) + \left| {b^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right) + 2\left| {a^{\prime}b^{\prime}} \right|\sinh \left( {\omega_{0} \eta_{A} } \right) - 2\left| {a^{\prime}b^{\prime}} \right|\sinh \left( {\omega_{0} \eta_{B} } \right)} \right], \hfill \\ \rho_{22} = \frac{{c^{{\prime}{2}} }}{4}\left[ { - \left| {a^{\prime}} \right|^{2} + \left| {b^{\prime}} \right|^{2} + \left| {a^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} { + }\omega_{0} \eta_{B} } \right) + \left| {b^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right) + 2\left| {a^{\prime}b^{\prime}} \right|\sinh \left( {\omega_{0} \eta_{A} } \right) + 2\left| {a^{\prime}b^{\prime}} \right|\sinh \left( {\omega_{0} \eta_{B} } \right)} \right], \hfill \\ \rho_{33} = \frac{{c^{{\prime}{2}} }}{4}\left[ { - \left| {a^{\prime}} \right|^{2} + \left| {b^{\prime}} \right|^{2} + \left| {a^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} { + }\omega_{0} \eta_{B} } \right) + \left| {b^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right) - 2\left| {a^{\prime}b^{\prime}} \right|\sinh \left( {\omega_{0} \eta_{A} } \right) - 2\left| {a^{\prime}b^{\prime}} \right|\sinh \left( {\omega_{0} \eta_{B} } \right)} \right], \hfill \\ \rho_{44} = \frac{{c^{{\prime}{2}} }}{4}\left[ {\left| {a^{\prime}} \right|^{2} - \left| {b^{\prime}} \right|^{2} + \left| {a^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} { + }\omega_{0} \eta_{B} } \right) + \left| {b^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right) - 2\left| {a^{\prime}b^{\prime}} \right|\sinh \left( {\omega_{0} \eta_{A} } \right) + 2\left| {a^{\prime}b^{\prime}} \right|\sinh \left( {\omega_{0} \eta_{B} } \right)} \right], \hfill \\ \rho_{12} = \rho_{21} = \frac{{c^{{\prime}{2}} }}{4}R_{1} \left( {\tau_{A} ,0} \right)\left[ {\left| {a^{\prime}} \right|^{2} \sinh \left( {\omega_{0} \eta_{A} + \omega_{0} \eta_{B} } \right) + \left| {b^{\prime}} \right|^{2} \sinh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right) + 2\left| {a^{\prime}b^{\prime}} \right|\cosh \left( {\omega_{0} \eta_{A} } \right)} \right], \hfill \\ \rho_{34} = \rho_{43} = \frac{{c^{{\prime}{2}} }}{4}R_{1} \left( {\tau_{A} ,0} \right)\left[ {\left| {a^{\prime}} \right|^{2} \sinh \left( {\omega_{0} \eta_{A} + \omega_{0} \eta_{B} } \right) + \left| {b^{\prime}} \right|^{2} \sinh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right) - 2\left| {a^{\prime}b^{\prime}} \right|\cosh \left( {\omega_{0} \eta_{A} } \right)} \right], \hfill \\ \rho_{13} = \rho_{31} = \frac{{c^{{\prime}{2}} }}{4}R_{1} \left( {0,\tau_{B} } \right)\left[ {\left| {a^{\prime}} \right|^{2} \sinh \left( {\omega_{0} \eta_{A} + \omega_{0} \eta_{B} } \right) - \left| {b^{\prime}} \right|^{2} \sinh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right) - 2\left| {a^{\prime}b^{\prime}} \right|\cosh \left( {\omega_{0} \eta_{B} } \right)} \right], \hfill \\ \rho_{24} = \rho_{42} = \frac{{c^{{\prime}{2}} }}{4}R_{1} \left( {0,\tau_{B} } \right)\left[ {\left| {a^{\prime}} \right|^{2} \sinh \left( {\omega_{0} \eta_{A} + \omega_{0} \eta_{B} } \right) - \left| {b^{\prime}} \right|^{2} \sinh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right) + 2\left| {a^{\prime}b^{\prime}} \right|\cosh \left( {\omega_{0} \eta_{B} } \right)} \right], \hfill \\ \rho_{14} = \rho_{41} = \frac{{c^{{\prime}{2}} }}{4}R_{1} \left( {\tau_{A} ,\tau_{B} } \right)\left[ {1 + \left| {a^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} + \omega_{0} \eta_{B} } \right) - \left| {b^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right)} \right], \hfill \\ \rho_{23} = \rho_{32} = \frac{{c^{{\prime}{2}} }}{4}R_{1} \left( {\tau_{A} , - \tau_{B} } \right)\left[ { - 1 + \left| {a^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} + \omega_{0} \eta_{B} } \right) - \left| {b^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right)} \right] \hfill \\ \end{gathered}$$
(32)

The normalization \(c^{\prime}\) constant is now given by

$$c^{{\prime}{2}} = \frac{1}{{\left| {a^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} + \omega_{0} \eta_{B} } \right) + \left| {b^{\prime}} \right|^{2} \cosh \left( {\omega_{0} \eta_{A} - \omega_{0} \eta_{B} } \right)}}$$
(33)

If \(\eta_{A}\) and \(\eta_{B}\) are set to 0, the density matrix in Eq. (32) describes the evolution under the influence of pure PMD effect, which is consistent with previous studies (Shtaif et al. 2011).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. Disentanglement induced by combined effects of polarization mode dispersion and polarization-dependent loss in optical fibers. Opt Quant Electron 55, 720 (2023). https://doi.org/10.1007/s11082-023-05025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05025-y

Keywords

Navigation