Skip to main content
Log in

Determination of the refractive index of indigo dye thin film/flexible polyacetate substrate

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A thin-film (215 nm) of indigo dye has been deposited on a polymer substrate (polyacetate) using thermal evaporation. The structure of the prepared film has been investigated using X-ray diffraction, showing X-ray amorphous or fine nanocrystalline nature. Analysis of the absorption coefficient in the strong absorption regions shows two indirect optical transitions with energy gaps (2.45 and 1.64 eV) in addition to the energy gap of the substrate (3.5 eV). Values of the refractive index have been calculated using four different methods. The average refractive index values near the first and second absorption edges are 2.525 and 2.871, respectively. The average values of the optical dielectric constant near the two corresponding edges are 6.377 and 8.064. Furthermore, the corresponding values of the nonlinear optical susceptibilities and nonlinear refractive index are in the same order of magnitude as other promising organic materials. This recommends indigo-thin films for flexible organic electro-optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article.

References

  • Adair, R., Chase, L.L., Payne, S.A.: Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337–3350 (1989)

    Article  ADS  Google Scholar 

  • Aftab, M., Butt, M.Z., Ali, D., Bashir, F., Khan, T.M.: Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis. Opt. Mater. 119, 111369–111386 (2021)

    Article  Google Scholar 

  • Al-Muntaser, A.A., El-Nahass, M.M., Oraby, A.H., Meikhail, M.S.: Influence of gamma irradiation on linear and nonlinear optical properties of nanocrystalline manganese(III) chloride tetraphenylporphine thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 220, 117112–117119 (2019)

    Article  Google Scholar 

  • Argüello-Sarmiento, G., Ortiz-Gutiérrez, M., Trejo-Duran, M., Andrade-Lucio, J.A., Castellanos-Aguila, J.E., Alvarado-Méndez, E.: Nonlinear optical properties in organic fish gelatin, potassium dichromate, and organic–inorganic mix. J. Mol. Liq. 383, 122058–122064 (2023)

  • Bouarissa, N.: Pressure dependence of refractive index, dielectric constants and optical phonon frequencies of indium arsenide. Optik 138, 263–268 (2017)

    Article  ADS  Google Scholar 

  • Bouzidi, A., Yahia, I.S., El-Sadek, M.S.A.: Novel and highly stable indigo (C.I. Vat Blue I) organic semiconductor dye: crystal structure, optically diffused reflectance and the electrical conductivity/dielectric behaviors. Dyes Pigments 146, 66–72 (2017)

    Article  Google Scholar 

  • Das, A.K., Mandal, R., Chakraborty, K., Mandal, D.K.: Design and fabrication of Indigo dye based organic thin film. Int. J. Innov. Knowl. Concepts 7, 187–184 (2019)

    Google Scholar 

  • de Seixas Melo, J., Moura, A.P., Melo, M.J.: Photophysical and spectroscopic studies of indigo derivatives in their keto and leuco forms. J. Phys. Chem. A 108, 6975–6981 (2004)

    Article  Google Scholar 

  • Elhosiny Ali, H., Ibrahim Morad, H., Algarni, M.M., El-Desoky, Yasmin Khairy, Zahran, H.Y., Yahia, I.S.: Structure analysis and nonlinear/linear optical properties of PVAOH/Si composites for low-cost optical technologies and limiting absorption. J. Mater. Sci.: Mater. Electron. 32, 4466–4479 (2021)

    Google Scholar 

  • El-Zaidia, E.F.M., Darwish, A.A.A., Yahia, I.S., Rashad, M.: Noncrystalline films of gallium(III) phthalocyanine chloride evaporated on a flexible polymer substrate for flexible organic technology: optical spectroscopy and optical limiting. Phys. Scr. 95, 115802–115811 (2020)

    Article  ADS  Google Scholar 

  • Fabian, J.: TDDFT-calculations of Vis/NIR absorbing compounds. Dyes Pigments 84, 36–53 (2010)

    Article  Google Scholar 

  • Frumar, M., Jedelský, J., Frumarová, B., Wágner, T., Hrdlička, M.: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non Cryst. Solids 326&327, 399–404 (2003)

    Article  Google Scholar 

  • Furuyama, T., Tamura, D., Maeda, H., Segi, M., Uchiyama, M.: Synthesis of homo- and heterofunctionalized bay-annulated indigo derivatives and their properties. Dyes Pigments 193, 109535–109542 (2021)

    Article  Google Scholar 

  • Ganesh, V., Zahran, H.Y., Yahia, I.S., Shkir, M., AlFaify, S.: Enhancement of nonlinear optical susceptibility of CuPc films by ITO layer. Opt. Mater. 62, 184–191 (2016)

    Article  ADS  Google Scholar 

  • Głowacki, E.D., Voss, G., Leonat, L., Irimia-Vladu, M., Bauer, S., Sariciftci, N.S.: Indigo and tyrian purple—from ancient natural dyes to modern organic semiconductors. Isr. J. Chem. 52, 1–12 (2012)

    Article  Google Scholar 

  • Hassanien, A.S., Sharma, I., Aly, K.A.: Linear and nonlinear optical studies of thermally evaporated chalcogenide a-Pb–Se–Ge thin films. Phys. B Phys. Condens. Matter 613, 412985–412996 (2021)

    Article  Google Scholar 

  • Herve, P., Vandamme, L.K.J.: General relation between refractive index and energy gap in semiconductors. Infared Phys. Technol. 35, 609–615 (1994)

    Article  ADS  Google Scholar 

  • Hussien, M.S.A., Shenouda, S.S., Parditka, B., Csík, A., Erdélyi, Z.: Enhancement of Urbach’s energy and non-lattice oxygen content of TiO1.7 ultra-thin films for more photocatalytic activity. Ceram. Int. 46, 15236–15241 (2020)

    Article  Google Scholar 

  • Iliopoulos, K., Czaplicki, R., El Ouazzani, H., Balandier, J.Y., Chas, M., Goeb, S., Sallé, M., Gindre, D., Sahraoui, B.: Physical origin of the third order nonlinear optical response of orthogonal pyrrolotetrathiafulvalene derivatives. Appl. Phys. Lett. 97, 101104–101107 (2010)

  • Kulyk, B., Waszkowska, K., Busseau, A., Villegas, C., Hudhomme, P., Dabos-Seignon, S., Zawadzka, A., Legoupy, S., Sahraoui, B.: Penta(zinc porphyrin)[60]fullerenes: Strong reverse saturable absorption for optical limiting applications. Appl. Surf. Sci. 533, 147468–147476 (2020)

  • Kumar, V., Singh, J.K.: Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 48, 571–574 (2010)

    Google Scholar 

  • Leea, H., Jeong, J., Yi, Y., Lee, H.: Electronic structure and fermi-level pinning of indigo for application in environment-friendly devices. Appl. Surf. Sci. 484, 808–813 (2019)

    Article  ADS  Google Scholar 

  • Manthrammel, M.A., Yahia, I.S., Shkir, M., AlFaify, S., Zahran, H.Y., Ganesha, V., Yakuphanoglu, F.: Novel design and microelectronic analysis of highly stable Au/indigo/n-Si photodiode for optoelectronic applications. Solid State Sci. 93, 7–12 (2019)

    Article  ADS  Google Scholar 

  • Mirershadi, S., Ahmadi-Kandjani, S., Zawadzka, A., Rouhbakhsh, H., Sahraoui, B.: Third order nonlinear optical properties of organometal halide perovskite by means of the Z-Scan technique. Chem. Phys. Lett. 647, 7–13 (2016)

  • Mongwaketsi, N., Khamlich, S., Pranaitis, M., Sahraoui, B., Khammar, F., Garab, G., Sparrow, R., Maaza, M.: Physical origin of third order non-linear optical response of porphyrin nanorods. Mater. Chem. Phys. 134, 646–650 (2012)

  • Moss, T.S.: Photoconductivity in the elements. Proc. Phys. Soc. Sect. A 64, 590–591 (1951)

    Article  ADS  Google Scholar 

  • Moss, T.S.: Relations between the refractive index and energy gap of semiconductors. Phys. Stat. Sol. B. 131, 415–427 (1985)

    Article  ADS  Google Scholar 

  • Mott, N.F., Davies, E.A.: Electronic processes in non-crystalline materials. Clarendon Press, Oxford (1979)

    Google Scholar 

  • Örek, C., Arslan, F., Gündüz, B., Kaygili, O., Bulut, N.: Comparison of experimental photonic and refractive index characteristics of the TBADN films with their theoretical counterparts. Chem. Phys. Lett. 696, 12–18 (2018)

    Article  ADS  Google Scholar 

  • Rajan, A.K., Cindrella, L.: Studies on new natural dye sensitizers from Indigofera tinctoria in dye sensitized solar cells. Opt. Mater. 88, 39–47 (2019)

    Article  ADS  Google Scholar 

  • Ravindra, N.M., Srivastava, V.K.: Variation of refractive index with energy gap in semiconductors. Infrared Phys. 19, 603–604 (1979)

    Article  ADS  Google Scholar 

  • Rivalta, A., Albonetti, C., Biancone, D., Ciana, M.D., d’Agostino, S., Biniek, L., Brinkmann, M., Giunchi, A., Salzillo, T., Brillante, A., Valle, R.G.D., Venuti, E.: Growth, morphology and molecular orientation of controlled Indigo thin films on silica surfaces. Surf. Interfaces 24, 101058–101067 (2021)

    Article  Google Scholar 

  • Shehata, M.M., Kamal, H., Hasheme, H.M., El-Nahass, M.M., Abdelhady, K.: Optical spectroscopy characterization of zinc tetra pyridel porphine (ZnTPyP) organic thin films. Opt. Laser Technol. 106, 136–144 (2018)

    Article  ADS  Google Scholar 

  • Shenouda, S.S., Yahia, I.S., Shakra, A.M.: Linear/nonlinear optical properties and dispersion parameters of nanocrystalline indigo organic semiconductor films. Physica b Phys. Condens. Matter 634, 413787–413793 (2022)

    Article  Google Scholar 

  • Tauc, J.: Amorphous and liquid semiconductors. Plenum Press, London and New York (1974)

    Book  Google Scholar 

  • Tichý, L., Ticha, H., Nagels, P., Callaerts, R., Mertens, R., Vlcek, M.: Optical properties of amorphous As–Se and Ge–As–Se thin films. Mater. Lett. 39, 122–128 (1999)

    Article  Google Scholar 

  • Travasso, M.I.G.M.G., Santos, P.C.S., Oliveira-Campos, A.M.F., Raposo, M.M.M., Prasitpan, N.: Indigo revisited. Adv. Colour Sci. Technol. 6, 95–99 (2003)

    Google Scholar 

  • Tripathy, S.K.: Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

The second author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the large research group program number: R.G.P.2/434/44.

Author information

Authors and Affiliations

Authors

Contributions

AMS: Conceptualization, methodology, formal analysis, investigation, writing—reviewing and editing. ISY: Conceptualization, methodology, formal analysis, investigation, writing—reviewing and editing. SSS: Conceptualization, methodology, formal analysis, investigation, writing—reviewing and editing.

Corresponding author

Correspondence to S. S. Shenouda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to this work.

Consent for publication

The authors declare their consent to publication.

Ethics approval and consent to participate

The authors declare their commitment to ethics related to his work, and they have designed the experiments, collected and analyzed the data, and written the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakra, A.M., Yahia, I.S. & Shenouda, S.S. Determination of the refractive index of indigo dye thin film/flexible polyacetate substrate. Opt Quant Electron 55, 823 (2023). https://doi.org/10.1007/s11082-023-05014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05014-1

Keywords

Navigation