Skip to main content
Log in

Numerical investigation of MAPbI3 perovskite solar cells for performance limiting parameters

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study employed a simulation-based approach for probing the performance-limiting parameters. Comparative observation of performance parameters with corresponding Shockley–Queisser limit values highlight a significant deficit in fill factor and open-circuit voltage (VOC) of perovskite solar cells (PSCs). This work identifies parameters such as carrier concentration, sheet resistance, and internal recombination responsible for these FF deficits in contemporary PSC. Simulation of illumination-dependent FF for these design parameters gives insight into the optimal range of parameters, which ought to be crucial to stabilize and enhance the device's performance. PSCs are sensitive toward shunt resistance and experimental PSC devices must have RSh above 5 K Ω cm2 for optimal FF and VOC values. We observed that FF is optimal in mid-carrier concentration around the range of ~ 1016 cm−3. This optimal FF could be due to the interplay between resistivity, Shockley–Read–Hall recombination and Auger recombination at these carrier densities. We summarize pathways such as shunt resistance values, carrier concentration, and back contact optimization work function to maximize FF in PSC. The optimized device with the derived design parameters has achieved a Voc, Jsc, FF and PCE of 1.3248 V, 22.93 mA/cm2, 79.39% and 23.22% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Cacovich, S., Stavrakas, C., Philippe, B., Richter, J.M., Alsari, M., Booker, E.P., Hutter, E.M., Pearson, A.J.: Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018)

    ADS  Google Scholar 

  • Behrouznejad, F., Shahbazi, S., Taghavinia, N., Wu, H.-P., Diau, E.W.-G.: A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells. J. Mater. Chem. A 4, 13488–13498 (2016)

    Google Scholar 

  • Brandt, R.E., Stevanović, V., Ginley, D.S., Buonassisi, T.: Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. Mrs Commun. 5, 265–275 (2015)

    Google Scholar 

  • Buin, A., Pietsch, P., Xu, J., Voznyy, O., Ip, A.H., Comin, R., Sargent, E.H.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014)

    ADS  Google Scholar 

  • Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    ADS  Google Scholar 

  • Bush, K.A., Frohna, K., Prasanna, R., Beal, R.E., Leijtens, T., Swifter, S.A., McGehee, M.D.: Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018)

    Google Scholar 

  • Cao, Y., Liu, Z., Li, W., Zhao, Z., Xiao, Z., Lei, B., Zi, W., Cheng, N., Liu, J., Tu, Y.: Efficient and stable MAPbI3 perovskite solar cells achieved via chlorobenzene/perylene mixed anti-solvent. Sol. Energy 220, 251–257 (2021)

    ADS  Google Scholar 

  • Chen, Z., Turedi, B., Alsalloum, A.Y., Yang, C., Zheng, X., Gereige, I., AlSaggaf, A., Mohammed, O.F., Bakr, O.M.: Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 4, 1258–1259 (2019)

    Google Scholar 

  • Chouhan, A.S., Jasti, N.P., Avasthi, S.: Effect of interface defect density on performance of perovskite solar cell: correlation of simulation and experiment. Mater. Lett. 221, 150–153 (2018)

    Google Scholar 

  • Deng, Q., Han, X., Gao, Y., Shao, G.: Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2. J. Appl. Phys. 112, 013523 (2012)

    ADS  Google Scholar 

  • Derkowska-Zielinska, B., Gondek, E., Pokladko-Kowar, M., Kaczmarek-Kedziera, A., Kysil, A., Lakshminarayana, G., Krupka, O.: Photovoltaic cells with various azo dyes as components of the active layer. Sol. Energy 203, 19–24 (2020)

    ADS  Google Scholar 

  • Du, H.-J., Wang, W.-C., Zhu, J.-Z.: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B 25, 108802 (2016)

    ADS  Google Scholar 

  • Feng, M., You, S., Cheng, N., Du, J.: High quality perovskite film solar cell using methanol as additive with 19.5% power conversion efficiency. Electrochim. Acta 293, 356–363 (2019)

    Google Scholar 

  • Fonash, S.: Solar cell device physics. Elsevier, Cambridge (2012)

    Google Scholar 

  • Gan, Y., Bi, X., Liu, Y., Qin, B., Li, Q., Jiang, Q., Mo, P.: Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 13, 5907 (2020)

    Google Scholar 

  • Green, M.A.: Solar cell fill factors: general graph and empirical expressions. Solid State Electron. 24, 788–789 (1981)

    ADS  Google Scholar 

  • Green, M.A., Bremner, S.P.: Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017)

    ADS  Google Scholar 

  • Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)

    ADS  Google Scholar 

  • Hoke, E.T., Slotcavage, D.J., Dohner, E.R., Bowring, A.R., Karunadasa, H.I., McGehee, M.D.: Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015)

    Google Scholar 

  • Hou, Y., Du, X., Scheiner, S., McMeekin, D.P., Wang, Z., Li, N., Killian, M.S., Chen, H., Richter, M., Levchuk, I.: A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017)

    ADS  Google Scholar 

  • Islam, M.T., Jani, M.R., Rahman, S., Shorowordi, K.M., Nishat, S.S., Hodges, D., Banerjee, S., Efstathiadis, H., Carbonara, J., Ahmed, S.: Investigation of non-Pb all-perovskite 4-T mechanically stacked and 2-T monolithic tandem solar devices utilizing SCAPS simulation. SN Appl.ied Sci. 3, 1–12 (2021a)

    Google Scholar 

  • Islam, M., Kumar, A., Thakur, A.: Defect density control using an intrinsic layer to enhance conversion efficiency in an optimized SnS solar cell. J. Electron. Mater. 50, 3603–3613 (2021b)

    ADS  Google Scholar 

  • Jeon, N.J., Na, H., Jung, E.H., Yang, T.-Y., Lee, Y.G., Kim, G., Shin, H.-W., Seok, S.I., Lee, J., Seo, J.: A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018)

    ADS  Google Scholar 

  • Johansson, M.B., Xie, L., Kim, B.J., Thyr, J., Kandra, T., Johansson, E.M., Göthelid, M., Edvinsson, T., Boschloo, G.: Highly crystalline MAPbI3 perovskite grain formation by irreversible poor-solvent diffusion aggregation, for efficient solar cell fabrication. Nano Energy 78, 105346 (2020)

    Google Scholar 

  • Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012)

    Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Google Scholar 

  • Lang, L., Yang, J.-H., Liu, H.-R., Xiang, H., Gong, X.: First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys. Lett. A 378, 290–293 (2014)

    ADS  Google Scholar 

  • Lee, J., Baik, S.: Enhanced crystallinity of CH3NH3PbI3 by the pre-coordination of PbI2–DMSO powders for highly reproducible and efficient planar heterojunction perovskite solar cells. RSC Adv. 8, 1005–1013 (2018)

    ADS  Google Scholar 

  • Lee, Y.M., Maeng, I., Park, J., Song, M., Yun, J.-H., Jung, M.-C., Nakamura, M.: Comprehensive understanding and controlling the defect structures: An effective approach for organic-inorganic hybrid perovskite-based solar-cell application. Front. Energy Res. 6, 128 (2018)

    ADS  Google Scholar 

  • Liang, J., Wang, C., Wang, Y., Xu, Z., Lu, Z., Ma, Y., Zhu, H., Hu, Y., Xiao, C., Yi, X.: All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016)

    Google Scholar 

  • Liang, J., Zhao, P., Wang, C., Wang, Y., Hu, Y., Zhu, G., Ma, L., Liu, J., Jin, Z.: CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139, 14009–14012 (2017ba)

    Google Scholar 

  • Liang, J., Liu, J., Jin, Z.: All-inorganic halide perovskites for optoelectronics: progress and prospects. Solar Rrl 1, 1700086 (2017b)

    Google Scholar 

  • Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2015)

    ADS  Google Scholar 

  • Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    ADS  Google Scholar 

  • Liu, F., Zhu, J., Wei, J., Li, Y., Lv, M., Yang, S., Zhang, B., Yao, J., Dai, S.: Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104, 253508 (2014)

    ADS  Google Scholar 

  • Longo, G., Momblona, C., La-Placa, M.-G., Gil-Escrig, L., Sessolo, M., Bolink, H.J.: Fully vacuum-processed wide band gap mixed-halide perovskite solar cells. ACS Energy Lett. 3, 214–219 (2017)

    Google Scholar 

  • Luo, D., Yang, W., Wang, Z., Sadhanala, A., Hu, Q., Su, R., Shivanna, R., Trindade, G.F., Watts, J.F., Xu, Z.: Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018)

    ADS  Google Scholar 

  • Ma, C., Park, N.-G.: A realistic methodology for 30% efficient perovskite solar cells. Chem 6, 1254–1264 (2020)

    Google Scholar 

  • Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116, 054505 (2014)

    ADS  Google Scholar 

  • Morales-Acevedo, A.: Variable band-gap semiconductors as the basis of new solar cells. Sol. Energy 83, 1466–1471 (2009)

    ADS  Google Scholar 

  • Mundhaas, N., Yu, Z.J., Bush, K.A., Wang, H.P., Häusele, J., Kavadiya, S., McGehee, M.D., Holman, Z.C.: Series resistance measurements of perovskite solar cells using Jsc–Voc measurements. Solar RRL 3, 1800378 (2019)

    Google Scholar 

  • Niemegeers, A., Burgelman, M., Decock, K., Verschraegen, J., Degrave, S.: SCAPS manual. Univ. Gent 13 (2014)

  • NREL.: Best research-cell efficiency chart (2022)

  • RafieiRad, R., Ganji, B.A.: Efficiency improvement of perovskite solar cells by utilizing CuInS2 thin layer: modeling and numerical study. IEEE Trans. Electron Devices 68, 4997–5002 (2021)

    ADS  Google Scholar 

  • Rühle, S.: Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016)

    ADS  Google Scholar 

  • Ryu, J., Noh, N., Jeon, Y., Chan Kim, W.S., Yang, J., Seo, S.I., Seok,: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7, 2614 (2014)

    Google Scholar 

  • Saidaminov, M.I., Kim, J., Jain, A., Quintero-Bermudez, R., Tan, H., Long, G., Tan, F., Johnston, A., Zhao, Y., Voznyy, O.: Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018)

    ADS  Google Scholar 

  • Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016)

    ADS  Google Scholar 

  • Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)

    ADS  Google Scholar 

  • Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    ADS  Google Scholar 

  • Stolterfoht, M., Wolff, C.M., Márquez, J.A., Zhang, S., Hages, C.J., Rothhardt, D., Albrecht, S., Burn, P.L., Meredith, P., Unold, T.: Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018)

    ADS  Google Scholar 

  • Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    ADS  Google Scholar 

  • Tan, H., Jain, A., Voznyy, O., Lan, X., De Arquer, F.P.G., Fan, J.Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y.: Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017)

    ADS  Google Scholar 

  • Tan, H., Che, F., Wei, M., Zhao, Y., Saidaminov, M.I., Todorović, P., Broberg, D., Walters, G., Tan, F., Zhuang, T.: Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 1–10 (2018)

    Google Scholar 

  • Tress, W.: Perovskite solar cells on the way to their radiative efficiency limit–insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7, 1602358 (2017)

    Google Scholar 

  • Wang, Z., Lin, Q., Chmiel, F.P., Sakai, N., Herz, L.M., Snaith, H.J.: Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 1–10 (2017)

    Google Scholar 

  • Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Google Scholar 

  • Wolff, C.M., Zu, F., Paulke, A., Toro, L.P., Koch, N., Neher, D.: Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. 29, 1700159 (2017)

    Google Scholar 

  • Xia, Y., Zhao, C., Zhao, P., Mao, L., Ding, Y., Hong, D., Tian, Y., Yan, W., Jin, Z.: Pseudohalide substitution and potassium doping in FA0.98K0.02Pb (SCN)2I for high-stability hole-conductor-free perovskite solar cells. J. Power Sour. 494, 229781 (2021)

    Google Scholar 

  • Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., Sum, T.C.: Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    ADS  Google Scholar 

  • Yan, W., Mao, L., Zhao, P., Mertens, A., Dottermusch, S., Hu, H., Jin, Z., Richards, B.S.: Determination of complex optical constants and photovoltaic device design of all-inorganic CsPbBr3 perovskite thin films. Opt. Express 28, 15706–15717 (2020)

    ADS  Google Scholar 

  • Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H.: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)

    ADS  Google Scholar 

  • Zheng, X., Chen, B., Dai, J., Fang, Y., Bai, Y., Lin, Y., Wei, H., Zeng, X.C., Huang, J.: Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 1–9 (2017)

    Google Scholar 

  • Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge Prof. Marc Burgelman for providing SCAPS.

Funding

The authors declare that this study was not funded by any grant or organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Goel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanna, J.L., Goel, E. & Kumar, A. Numerical investigation of MAPbI3 perovskite solar cells for performance limiting parameters. Opt Quant Electron 55, 610 (2023). https://doi.org/10.1007/s11082-023-04876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04876-9

Keywords

Navigation