Skip to main content
Log in

Exploring nonlinear dispersive waves in a disordered medium: an analysis using \(\phi ^6\) model expansion method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study investigates a stochastic nonlinear Schrödinger equation (1+1) dimensional with a random potential. The equation under consideration is crucial in the study of the evolution of nonlinear dispersive waves in a completely disordered medium. By employing the \({\phi} ^{6}\) model expansion technique, we will derive stochastic exact solutions for this stochastic partial differential equation. The obtained solutions can be expressed as exponential type and the results show that this method is effective and simple for solving such equations. Additionally, the study of nonlinear equations in a random environment is important as solitons are known to be stable against mutual collisions and behave like particles. However, it is difficult to describe realistic physical phenomena with variable or constant coefficient nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. A beam that narrows down to itself in nonlinear medium.

References

  • Abdusalam, H.A.: On an improved complex tanh-function method. Int. J. Nonlin. Sci. Numer. Simul. 6(2), 99–106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Alkhidhr, H.A., Abdelrahman, M.A.: Wave structures to the three coupled nonlinear Maccaris systems in plasma physics. Res. Phys. 33, 105092 (2021)

    Google Scholar 

  • Alkhidhr, H.A., Abdelwahed, H.G., Abdelrahman, M.A., Alghanim, S.: Some solutions for a stochastic NLSE in the unstable and higher order dispersive environments. Res. Phys. 34, 105242 (2022)

    Google Scholar 

  • Aminikhah, H., Moosaei, H., Hajipour, M.: Exact solutions for nonlinear partial differential equations via Exp-function method. Numer. Meth. Partial Diff. Eq. 26(6), 1427–1433 (2010)

    MathSciNet  MATH  Google Scholar 

  • Batool, F., Akram, G.: Application of extended Fan sub-equation method to (1+ 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation with fractional evolution. Opt. Quant. Electr. 49(11), 1–9 (2017)

    Article  Google Scholar 

  • Belaouar, R., De Bouard, A., Debussche, A.: Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion. Stoch. Part. Diff. Eq.: Anal. Comput. 3(1), 103–132 (2015)

    MATH  Google Scholar 

  • Bibi, K.: The \(\phi ^6\)-model expansion method for solving the Radhakrishnan-Kundu-Lakshmanan equation with Kerr law nonlinearity. Optik 234, 166614 (2021)

    Article  ADS  Google Scholar 

  • Cheemaa, N., Younis, M.: New and more exact traveling wave solutions to integrable (2+ 1)-dimensional Maccari system. Nonlin. Dyn. 83(3), 1395–1401 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Corwin, I., Shen, H.: Some recent progress in singular stochastic partial differential equations. Bull. Am. Math. Soci. 57(3), 409–454 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • De Bouard, A., Debussche, A.: The nonlinear Schrödinger equation with white noise dispersion. J. Funct. Anal. 259(5), 1300–1321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Debussche, A., Weber, H.: The Schrödinger equation with spatial white noise potential (2018)

  • El-Wakil, S.A., Abdou, M.A.: The extended Fan sub-equation method and its applications for a class of nonlinear evolution equations. Chaos, Solit. & Fract. 36(2), 343–353 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Iqbal, M.S.: Solutions of boundary value problems for nonlinear partial differential equations by fixed point methods. T.U, Graz library (2011)

    Google Scholar 

  • Jiong, S.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309(5–6), 387–396 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  • Marty, R.: On a splitting scheme for the nonlinear Schrödinger equation in a random medium (2006)

  • Mohammed, W.W.: Modulation equation for the stochastic Swift Hohenberg equation with cubic and quintic nonlinearities on the real line. Mathematics 7(12), 1217 (2019)

    Article  Google Scholar 

  • Mohammed, W.W.: Approximate solutions for stochastic time-fractional reaction diffusion equations with multiplicative noise. Math. Meth. Appl. Sci. 44(2), 2140–2157 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammed, W.W., Ahmad, H., Hamza, A.E., Aly, E.S., El-Morshedy, M., Elabbasy, E.M.: The exact solutions of the stochastic GinzburgLandau equation. Res. Phys. 23, 103988 (2021)

    Google Scholar 

  • Mohammed, W.W., Iqbal, N., Botmart, T.: Additive noise effects on the stabilization of fractional-space diffusion equation solutions. Mathematics 10(1), 130 (2022)

    Article  Google Scholar 

  • Paredes, A., Olivieri, D.N., Michinel, H.: From optics to dark matter: a review on nonlinear Schrödinger-Poisson systems. Physica D: Nonlin. Phenom. 403, 132301 (2020)

    Article  MATH  Google Scholar 

  • Prévôt, C., Röckner, M.: A concise course on stochastic partial differential equations (Vol. 1905, pp. vi+-144). Berlin: Springer (2007)

  • Ryabov, P.N., Sinelshchikov, D.I., Kochanov, M.B.: Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations. Appl. Math. Comp. 218(7), 3965–3972 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Vitanov, N.K.: On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDEs: the role of the simplest equation. Commun. Nonlin. Sci. Numer. Simul. 16(11), 4215–4231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: The Hirota s direct method for multiple-soliton solutions for three model equations of shallow water waves. Appl. Math. Comput. 201(1–2), 489–503 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Yasar, E.: New travelling wave solutions to the Ostrovsky equation. Appl. Math. Comp. 216(11), 3191–3194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Yomba, E.: The extended Fan’s sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations. Phys. Lett. A 336(6), 463–476 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R.: Dispersive of propagation wave structures to the Dullin–Gottwald–Holm dynamical equation in a shallow water waves. Chinese J. Phys. 68, 348–364 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Younis, M., Sulaiman, T.A., Bilal, M., Rehman, S.U., Younas, U.: Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. Commun. Theoret. Phys. 72(6), 065001 (2020)

    Article  ADS  MATH  Google Scholar 

  • Younis, M., Seadawy, A.R., Baber, M.Z., Husain, S., Iqbal, M.S., Rizvi, S.T.R., Baleanu, D.: Analytical optical soliton solutions of the Schrödinger-Poisson dynamical system. Res. Phys. 27, 104369 (2021)

    Google Scholar 

  • Zayed, E.M., Al-Nowehy, A.G.: Many new exact solutions to the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms using three different techniques. Optik 143, 84–103 (2017)

    Article  ADS  Google Scholar 

  • Zayed, E.M., Al-Nowehy, A.G.: New generalized \(\phi ^6\)- model expansion method and its applications to the \((3+ 1)\) dimensional resonant nonlinear Schrödinger equation with parabolic law nonlinearity. Optik 214, 164702 (2020)

    Article  ADS  Google Scholar 

  • Zhao, Y.M.: F-expansion method and its application for finding new exact solutions to the Kudryashov–Sinelshchikov equation. J. Appl. Math. (2013). https://doi.org/10.1155/2013/895760

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Q., Yao, D., Chen, F.: Analytical study of optical solitons in media with Kerr and parabolic-law nonlinearities. J. Modern Optics 60(19), 1652–1657 (2013)

    Article  ADS  Google Scholar 

  • Zhou, Q., Xiong, X., Zhu, Q., Liu, Y., Yu, H., Yao, P., Belicd, M.: Optical solitons with nonlinear dispersion in polynomial law medium. J. Optoelectr. Adv. Mater. 17, 82–86 (2015)

    Google Scholar 

  • Ziane, D., Hamdi Cherif, M., Baleanu, D., Belghaba, K.: Non-differentiable solution of nonlinear biological population model on cantor sets. Fractal Fract. 4(1), 5 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Iqbal, M.S., Ashraf, R. et al. Exploring nonlinear dispersive waves in a disordered medium: an analysis using \(\phi ^6\) model expansion method. Opt Quant Electron 55, 651 (2023). https://doi.org/10.1007/s11082-023-04851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04851-4

Keywords

Navigation