Skip to main content
Log in

Properties of mid-infrared interface modes at the interface of two isotropic dielectric photonic crystals

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present manuscript, theoretical investigation of interface modes at the interface of two isotropic dielectric photonic crystals is performed. For both transverse electric (\(\sigma -\) polarized waves) and transverse magnetic (\(\pi -\) polarized waves) cases dispersive properties such as dispersion curve, photonic band gap (PBG) shrinking \(-\) optical holes and Brewster points are discussed. For the case of \(\sigma -\) polarized waves, interface modes are exhibited which are of prime importance in the present analysis. It is shown that for \(\sigma -\) polarized waves only DD (decaying-decaying) and DE (decaying-extending) type interface modes exist. On the other hand, for the case of \(\pi -\) polarized waves only EE (extending- extending) type interface modes exist which is completely transmitted through the photonic structure. Therefore, depending on the properties of the chosen materials, such photonic structure can seek different applications in the design of sensors, optical filters, optical switches, etc. and it is also suitable to explore the electromagnetic (EM) behaviour at the interface of various media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Baba, T.: Slow light in photonic crystals. Nat. Photon. 2(8), 465–473 (2008)

    Article  ADS  Google Scholar 

  • Barvestani, J., Kalafi, M., Soltani-Vala, A., Namdar, A.: Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed materials. Phy. Rev. A 77(1), 013805-(1–5) (2008).

  • Bouchacourt, M., Thevenot, F.: The correlation between the thermoelectric properties and stoichiometry in the boron carbide phase B4C–B10.5C. J. Mater Sci. 20(4), 1237–1247 (1985)

    Article  ADS  Google Scholar 

  • Dowling, J.P., Scalora, M., Bloemer, M.J., Bowden, C.M.: The photonic band edge laser: a new approach to gain enhancement. J. Appl. Phys. 75(4), 1896–1899 (1994)

    Article  ADS  Google Scholar 

  • Foteinopoulou, S., et al.: Experimental verification of backward wave propagation at photonic crystal surfaces”. Appl. Phys. Lett. 91(21), 214102 (2007)

    Article  ADS  Google Scholar 

  • Gaspar-Armenta, J.A., Villa, F.: Band-structure properties of one-dimensional photonic crystals under the formalism of equivalent systems. J. Opt. Soc. Am. B 21(2), 405–412 (2004)

    Article  ADS  Google Scholar 

  • Goto, et al.: Optical tamm states in one-dimensional magnetophotonic structures”. Phys. Rev. Lett. 101, 113902 (2008)

    Article  ADS  Google Scholar 

  • Harris, D.C., et al.: Properties of an infrared-transparent MgO: Y2O3 nanocomposite. J. Am. Ceram. Soc. 96(12), 3828–3835 (2013)

    Article  Google Scholar 

  • Hu, J., Mawst, L., Moss, S., Petit, L., Ting, D.: Feature issue introduction: mid-infrared optical materials and their device applications. Opt. Mater. Exp. 8(7), 2026–2034 (2018)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Fan, S., Mekis, A. (auth.) and Soukoulis, C.M.. (eds.), (NATO Science Series 563)- Photonic crystals and light localization in the 21st century. ISBN 978–94–010–0738–2, Springer Netherlands, 41-57 (2001).

  • Joannopoulos, J.D. et al.: Photonic crystals: molding the flow of light. 2nd edition, Princeton University Press (2008).

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    Article  ADS  Google Scholar 

  • Kumar, M., Prasad, S.: The properties of mid infrared surface modes at the interface of air and one dimensional ternary photonic crystal”. Mater. Today Commun. 29, 102889-1-102889-7 (2021a)

  • Kumar, M., Prasad, S.: Mid-infrared sensor based on resonance excitation of graphene plasmon polariton-coupled Bloch surface modes at the interface of anisotropically truncated one-dimensional ternary photonic crystal. Waves Random Complex Media, 1–16 (2021b). https://doi.org/10.1080/17455030.2021.1973692

  • Kumar, M., Prasad, S.: Midinfrared biosensor based on bloch surface mode excitation in truncated onedimensional ternary photonic crystal under Kretschmann configuration. Plasmonics 16(3), 923–932 (2021c)

    Article  MathSciNet  Google Scholar 

  • Larruquert, J.I., et al.: Self-consistent optical constants of sputter-deposited B4C thin films”. J. Opt. Soc. Am. A 29, 117–123 (2012)

    Article  ADS  Google Scholar 

  • Matsumoto, T., Fujita, S., Baba, T.: Wavelength demultiplexer consisting of photonic crystal superprism and superlens. Opt. Exp. 13(26), 10768–10776 (2005)

    Article  Google Scholar 

  • Meade, R.D., Brommer, K.D., Rappe, A.M., Joannopoulos, J.D.: Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B (rapid Communication) 44(19), 10961–10964 (1991)

    Article  ADS  Google Scholar 

  • Morozov, G.V., Sprung, D.W.L.: Floquet-Bloch waves in one-dimensional photonic crystals”. EPL 96(5), 54005 (2011)

    Article  ADS  Google Scholar 

  • Morozov, G.V., Sprung, D.W.L., Martorell, J.: Semiclassical coupled wave theory for TM waves in one-dimensional photonic crystals”. Phys. Rev. E 70(1), 016606 (2004)

    Article  ADS  Google Scholar 

  • Morozov, G.V., Sprung, D.W.L., Martorell, J.: Semiclassical coupled-wave theory and its application to TE waves in one-dimensional photonic crystals”. Phys. Rev. E 69(1), 016612 (2004)

    Article  ADS  Google Scholar 

  • Nigara, Y.: Measurement of the optical constants of yttrium oxide. Jpn. J. Appl. Phys. 7(4), 404–408 (1968)

    Article  ADS  Google Scholar 

  • Nigara, Y., Ishigame, M., Sakurai, T.: Infrared properties of yttrium oxide. J. of Phys. Soc. of Jpn. 30(2), 453–458 (1971)

    Article  ADS  Google Scholar 

  • Paeder, V., Musi, V., Hvozdara, L., Herminjard, S., Herzig, H.P.: Detection of protein aggregation with a Bloch surface wave based sensor. Sens. Actuators B Chem 157, 260–264 (2011)

    Article  Google Scholar 

  • Sinibaldi, A., et al.: Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B Chem 174, 292–298 (2012)

    Article  Google Scholar 

  • Tropf, W.J., Thomas, M.E.: Yttrium Oxide (Y2O3), Handbook of optical constants of solids”, ISBN-978-0-12-544415-6, vol. II, 1079-1096, Elseviewer Inc (1997).

  • Wu, J., et al.: Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range”. J. Appl. Phys. 119(20), 203107 (2016)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yeh, P.: Optical Waves in Layered Media. John Wiley & Sons Inc, New Jersey, 118–134 (2005)

  • Yeh, P., Yariv, A., Hong, C.S.: Electromagnetic propagation in periodic stratified media I. general theory. J. Opt. Soc. Am. 67(4), 423–438 (1977)

    Article  ADS  Google Scholar 

  • Yu, L., Barakat, E., Nakagawa, W., Herzig, H.P.: Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform. J. Opt. Soc. Am. B 31(12), 2996–3000 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Mahendra Kumar would like to thank Prof. Abhay Kumar Singh and Prof. Vivek Singh for giving their suggestions and time to valuable discussions.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Surendra Prasad conceived the original idea, supervised throughout preparation of the manuscript and Mr. Mahendra Kumar performed calculations, and wrote main manuscript.

Corresponding author

Correspondence to Surendra Prasad.

Ethics declarations

Conflict of interest

(Always applicable and includes interests of a financial or personal nature): None.

Ethical approval

Lack of appropriate permission and/or credit for reproduced images: Not applicable.

Consent to participate

Applicable for both human and/ or animal studies. Ethical committees, Internal Review Boards and guidelines followed must be named. When applicable, additional headings with statements on consent to participate.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Prasad, S. Properties of mid-infrared interface modes at the interface of two isotropic dielectric photonic crystals. Opt Quant Electron 55, 461 (2023). https://doi.org/10.1007/s11082-023-04722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04722-y

Keywords

Navigation