Skip to main content
Log in

A simplified model for predicting the nonlinear properties of water and centrosymmetric media at terahertz frequencies

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We develop a new analytical method for calculating the nonlinear refractive index and the two-photon absorption coefficient of centrosymmetric materials based on the classical anharmonic oscillator model. We calculate the nonlinear dispersion properties of pure bulk water over a broad frequency range from 0.5 to 750 THz. Our model could estimate pure water’s nonlinear properties, including the nonlinear refractive index and nonlinear absorption coefficient, with appropriate accuracy, consistent with the previous experimental and theoretical results, and through a more straightforward and less complicated approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availablity

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Amini, T., Jahangiri, F.: Regenerative terahertz wave parametric amplifier based on four-wave mixing in asynchronously pumped graphene oxide integrated TOPAS. Opt. Express 29, 33053–33066 (2021)

    Article  ADS  Google Scholar 

  • Amini, T., Jahangiri, F., Ameri, Z., Hemmatian, M.A.: A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci. 12, e92 (2021)

    Article  Google Scholar 

  • Atherton, T.J., Biaggio, I., Clays, K.: Nonlinear optics near the fundamental limit: introduction. JOSA B 33(12), NOF1–NOF2 (2016)

    Article  Google Scholar 

  • Baierl, S., Hohenleutner, M., Kampfrath, T., Zvezdin, A., Kimel, A.V., Huber, R., Mikhaylovskiy, R.: Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photonics 10, 715–718 (2016)

    Article  ADS  Google Scholar 

  • Boyd, R.: Nonlinear optics, pp. 69-134. Academic Press, Amsterdam, Boston (2008)

  • Cotter, D., Manning, R., Blow, K., Ellis, A., Kelly, A., Nesset, D., Phillips, I., Poustie, A., Rogers, D.: Nonlinear optics for high-speed digital information processing. Science 286, 1523–1528 (1999)

    Article  Google Scholar 

  • Dolgaleva, K., Materikina, D.V., Boyd, R.W., Kozlov, S.A.: Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies. Phys. Rev. A 92, 023809 (2015)

    Article  ADS  Google Scholar 

  • Dong, J., Locquet, A., Melis, M., Citrin, D.: Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry. Sci. Rep. 7, 1–12 (2017)

    Article  Google Scholar 

  • Fejer, M.M.: Nonlinear optical frequency conversion. Phys. Today 47, 25–33 (1994)

    Article  ADS  Google Scholar 

  • Grachev, Y.V., Liu, X., Putilin, S.E., Tsypkin, A.N., Bespalov, V.G., Kozlov, S.A., Zhang, X.-C.: Wireless data transmission method using pulsed thz sliced spectral supercontinuum. IEEE Photonics Technol. Lett. 30, 103–106 (2017)

    Article  ADS  Google Scholar 

  • Hafez, H., Chai, X., Ibrahim, A., Mondal, S., Férachou, D., Ropagnol, X., Ozaki, T.: Intense terahertz radiation and their applications. J. Opt. 18, 093004 (2016)

    Article  ADS  Google Scholar 

  • https://refractiveindex.info

  • Jin, Q., Yiwen, E., Williams, K., Dai, J., Zhang, X.C.: Observation of broadband terahertz wave generation from liquid water. Appl. Phys. Lett. 111(7), 071103 (2017)

    Article  ADS  Google Scholar 

  • Kaltenecker, K.J., Tuniz, A., Fleming, S.C., Argyros, A., Kuhlmey, B.T., Walther, M., Fischer, B.M.: Ultrabroadband perfect imaging in terahertz wire media using single-cycle pulses. Optica 3, 458–464 (2016)

    Article  ADS  Google Scholar 

  • Kanemaru, H., Nosaka, Y., Hirako, A., Ohkawa, K., Kobayashi, T., Tokunaga, E.: Opt. Rev. 17, 352–356 (2010)

    Article  Google Scholar 

  • Kawase, K., Tripathi, S.R., Hayashi, S.: “Nonlinear optical thz generation and applications,” In: 2012 International Conference on Fiber Optics and Photonics (PHOTONICS), (IEEE), pp. 1-3, (2012)

  • Keren-Zur, S., Tal, M., Fleischer, S., Mittleman, D.M., Ellenbogen, T.: Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat. Commun. 10, 1–6 (2019)

    Article  ADS  Google Scholar 

  • Kivshar, Y.: Bending light at will. Nat. Phys. 2, 729–730 (2006)

    Article  Google Scholar 

  • Li, Y., Liao, G., Neely, D., McKenna, P., Sheng, Z., Zhang, J.: “mJ terahertz radiation sources from intense laser-foil interactions,” In: International Symposium on Ultrafast Phenomena and Terahertz Waves, (Optical Society of America), p. TuE1 (2018)

  • Liu, H., Chen, X.: Nonlinear moire superlattice for super-resolution nondestructive detection of nonlinear photonic crystals. Laser Photonics 15(10), 2000596 (2021)

    ADS  Google Scholar 

  • Melnik, M., Vorontsova, I., Putilin, S., Tcypkin, A., Kozlov, S.: Methodical inaccuracy of the z-scan method for few-cycle terahertz pulses. Sci. Rep. 9, 1–8 (2019)

    Article  Google Scholar 

  • Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10, 371–379 (2016)

    Article  ADS  Google Scholar 

  • Oliveira, L., Zilio, S.: Single-beam time-resolved z-scan measurements of slow absorbers. Appl. Phys. Lett. 65, 2121–2123 (1994)

    Article  ADS  Google Scholar 

  • Petrov, D., Gomes, A., De Araújo, C.B.: Reflection z-scan technique for measurements of optical properties of surfaces. Appl. Phys. Lett. 65, 1067–1069 (1994)

    Article  ADS  Google Scholar 

  • Popov, A.K., Shalaev, V.M.: “Merging nonlinear optics and negative-index metamaterials,” arXiv preprint arXiv:1108.0867 (2011)

  • Radic, S., Moss, D.J., Eggleton, B.J.: Nonlinear optics in communications: From crippling impairment to ultrafast tools. Opt. Fiber Telecommun. VA, 759–828 (2008)

    Article  Google Scholar 

  • Segelstein, D.J.: The complex refractive index of water. Ph.D. thesis, University of Missouri-Kansas City (1981)

  • Sheik-Bahae, M., Said, A.A., Wei, T.-H., Hagan, D.J., Van Stryland, E.W.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  • Tanaka, K., Hirori, H., Nagai, M.: Thz nonlinear spectroscopy of solids. IEEE Trans. Terahertz Sci. Technol. 1, 301–312 (2011)

    Article  ADS  Google Scholar 

  • Tcypkin, A.N., Melnik, M.V., Zhukova, M.O., Vorontsova, I.O., Putilin, S.E., Kozlov, S.A., Zhang, X.-C.: High kerr nonlinearity of water in thz spectral range. Opt. Express 27, 10419–10425 (2019)

    Article  ADS  Google Scholar 

  • Tcypkin, A., Zhukova, M., Melnik, M., Vorontsova, I., Kulya, M., Putilin, S., Kozlov, S., Choudhary, S., Boyd, R.W.: Giant third-order nonlinear response of liquids at terahertz frequencies. Phys. Rev. Appl. 15, 054009 (2021)

    Article  ADS  Google Scholar 

  • Wilkes, W., et al.: Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot super continuum spectral interferometry. Appl. Phys. Lett. 94, 211102 (2009)

  • Xin, X., Altan, H., Saint, A., Matten, D., Alfano, R.: Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature. J. Appl. Phys. 100, 094905 (2006)

    Article  ADS  Google Scholar 

  • Zhang, S., Liu, L., Ren, S., Li, Z., Zhao, Y., Yang, Z., Hu, R., Qu, J.: Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron. Adv. 3(10), 200003 (2020)

    Article  Google Scholar 

  • Zhu, H., Hu, B., Hu, H., He, W., Huang, J., Li, G.: Tunable dielectric constant of water confined in graphene oxide nanochannels. J. Mol. Liq. 324, 115139 (2021)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FJ conceived the original idea and supervised the project. MAH developed the theoretical formalism, and performed the analytic and numerical calculations. Both authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Fazel Jahangiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmatian, M.A., Jahangiri, F. A simplified model for predicting the nonlinear properties of water and centrosymmetric media at terahertz frequencies. Opt Quant Electron 55, 359 (2023). https://doi.org/10.1007/s11082-023-04598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04598-y

Keywords

Navigation