Skip to main content
Log in

Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm

  • Published:
Applied Physics B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The nonlinear (NL) responses of liquid water, ethanol and tetrahydrofuran (THF) are investigated at 355 nm using a Nd:YAG laser delivering pulses of 10 ps. The experiments are performed using the D4σ method combined with the Z-scan technique. Third-order NL refractive indices are determined, as well as the two-photon absorption coefficient and the critical self-focus power. The NL refractive indices are found to be constant for intensity up to 150 GW/cm2 for the three considered solvents, revealing no higher order nonlinearities. Water appears to be a better solvent than ethanol and THF in the UV domain because of its lower NL index and absence of NL absorption. We expect the present study to be useful for NL index measurements in solutions and for numerous future fundamental interest or potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Trillo, W. Torruellas, Spatial Solitons (Springer, New York, 2001)

    Book  Google Scholar 

  2. L. Bergé, Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259–370 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Sheik-Bahae, A.A. Said, T.H. Wei, D. Hagan, E.W. Styland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  4. G. Boudebs, V. Besse, C. Cassagne, H. Leblond, C.B. de Araújo, Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system. Opt. Lett. 38, 2206 (2013)

    Article  ADS  Google Scholar 

  5. N.A. Smith, S.R. Meech, Optically-heterodyne-detected optical Kerr effect (OHD-OKE): applications in condensed phase dynamics. Int. Rev. Phys. Chem. 21, 75 (2002)

    Article  Google Scholar 

  6. E. Dremetsika, B. Dlubak, S.-P. Gorza, C. Ciret, M.B. Martin, S. Hofmann, P. Kockaert, Measuring the nonlinear refractive index of graphene using the optical Kerr effect method. Opt. Lett. 41, 3281 (2016)

    Article  ADS  Google Scholar 

  7. Z.W. Wilkes, S. Varna, Y.-H. Chen, H.M. Milchberg, T.G. Jones, A. Ting, Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry. Appl. Phys. Lett. 94, 211102 (2009)

    Article  ADS  Google Scholar 

  8. G. Boudebs, M. Chis, X.N. Phu, Third-order susceptibility measurement by a new Mach–Zehnder interferometry technique. J. Opt. Soc. Am. B 18, 623 (2001)

    Article  ADS  Google Scholar 

  9. T. Brabec, Ch Spielmann, P.F. Curley, F. Krausz, Kerr lens mode locking. Opt. Lett. 17, 1292–1294 (1992)

    Article  ADS  Google Scholar 

  10. Y.S. Kivshar, G.I. Stegeman, Spatial optical solitons—guiding light for future applications. Opt. Photon. News, 13, 59–63 (2002)

    Article  ADS  Google Scholar 

  11. J. Vogel, G. Noack, G. Hüttman, Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005)

    Article  ADS  Google Scholar 

  12. M.Y. Shen, C.H. Crouch, J.E. Carey, E. Mazur, Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl. Phys. Lett. 85, 5694 (2004)

    Article  ADS  Google Scholar 

  13. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38, 89–188 (2006)

    Article  ADS  Google Scholar 

  14. W.M. Lee, R. El-Ganainy, D.N. Christodoulides, K. Dholakia, E.M. Wright, Nonlinear optical response of colloidal suspensions. Opt. Express 17, 10277–10289 (2009)

    Article  ADS  Google Scholar 

  15. P. Reiss, M. Protière, L. Li, Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009)

    Article  Google Scholar 

  16. E.L. Falcão-Filho, C.B. de Araújo, A. Galembeck, M.M. Oliveira, A.J.G. Zarbin, Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide. J. Opt. Soc. Am. B 22, 2444–2449 (2005)

    Article  ADS  Google Scholar 

  17. S. Reyna, C.B. de Araújo, High-order optical nonlinearities in plasmonic nanocomposites—a review. Adv. Opt. Photonics 9(4), 720–774 (2017)

    Article  Google Scholar 

  18. M. Wettstein, F.P. Bonafé, M.B. Oviedo, C.G. Sánchez, Optical properties of graphene nanoflakes: shape matters. J. Chem. Phys. 144(22), 224305 (2016)

    Article  ADS  Google Scholar 

  19. W. Walasik, S.Z. Silahli, N.M. Litchinitser, Dynamics of necklace beams in nonlinear colloidal suspensions. Sci. Rep. 7, 1–9 (2017)

    Article  Google Scholar 

  20. L. Stoyanov, N. Dimitrov, I. Stefanov, D.N. Neshev, A. Dreischuh, Optical waveguiding by necklace and azimuthon beams in nonlinear media. J. Opt. Soc. Am. B 34, 801 (2017)

    Article  ADS  Google Scholar 

  21. C. Schnebelin, C. Cassagne, C.B. de Araújo, G. Boudebs, Measurements of the third- and fifth-order optical nonlinearities of water at 532 and 1064 nm using the D4σ method. Opt. Lett. 39, 5046 (2014)

    Article  ADS  Google Scholar 

  22. F. Rau, J. Kajzar, B. Luc, G. sahraoui, Boudebs, Comparison of Z-scan and THG derived nonlinear index of refraction in selected organic solvents. J. Opt. Soc. Am., B 25, 1738–1747 (2008)

    Article  ADS  Google Scholar 

  23. Q. Gong, J. Li, T. Zhang, H. Yang, Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect. Chin. Phys. Let. 15, 1 (1998)

    Article  ADS  Google Scholar 

  24. W. Liu, O. Kosavreva, I.S. Golubtsov, A. Iwasaki, A. Becker, V.P. Kandidov, S.L. Chen, Femtosecond laser pulse filamentation versus optical breakdown in H2O. Appl. Phys. B Lasers Opt 76, 215 (2003)

    Article  ADS  Google Scholar 

  25. M.R. Ferdinandus, M. Reichert, T.R. Ensley, H. Hu, D.A. Fishman, S. Webster, D. Hagan, E.W. Van Stryland, Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements. Opt. Mater. Express 2(12), 1776–1790 (2012)

    Article  Google Scholar 

  26. C.B. de Araújo, A.S.L. Gomes, G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review”, Invited paper. Rep. Prog. Phys. 79, 036401 (2016)

    Article  ADS  Google Scholar 

  27. G. Boudebs, H. Wang, C. Cassagne, H. Leblond, C.B. de Araújo, Investigations on the nonlinear optical response and losses of toluene at 532 and 1064 nm in the picosecond regime. Appl. Phys. B 122(5), 111 (2016)

    Article  ADS  Google Scholar 

  28. G. Fedus, Boudebs, Experimental techniques using 4f coherent imaging system for measuring nonlinear refraction. Opt. Commun. 292, 140 (2013)

    Article  ADS  Google Scholar 

  29. W. Goodman, Introduction to Fourier optics (Mc Graw Hill, New York, 1968)

    Google Scholar 

  30. H. Wang, G. Boudebs, C.B. de Araujo, Picosecond cubic and quintic nonlinearity of lithium niobate at 532 nm. J. Appl. Phys. 122(8), 083103 (2017)

    Article  ADS  Google Scholar 

  31. G. Boudebs, K. Fedus, Absolute measurement of the nonlinear refractive indices of reference materials. J. Appl. Phys. 105, 103106 (2009)

    Article  ADS  Google Scholar 

  32. R.W. Boyd, Nonlinear optics (Academic press, Cambridge, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Boudebs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ciret, C., Godet, JL. et al. Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm. Appl. Phys. B 124, 95 (2018). https://doi.org/10.1007/s00340-018-6967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6967-0

Navigation