Skip to main content
Log in

Characterization of wideband semiconductor optical amplifier: numerical analysis and simulation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

One of the important devices for developing optical networks is the semiconductor optical amplifier (SOA). SOAs are utilized in a wide range to accomplish different purposes. In this paper, a wideband steady-state model and the corresponding numerical solution are presented for a bulk InP-InGaAsP homogeneous buried ridge stripe SOA. We characterize its gain and noise figure response to the variation in the bias current and the power of input signal. Moreover, the impact of power of input signal, molar fraction of Arsenide, bias current, and temperature is investigated at the spatial distribution of carrier density on the active region of the wideband SOA. The numerical results are approved by a comparison with simulation results showing a fair agreement. The obtained results reveal that the gain reaches its maximum value of 24, 23 and 21.6 dB at an input bias current of 120, 100 and 80 mA, separately, at the power of input signal of − 40 dBm. While, the minimum achieved noise figure (NF) is 13, 12, 9 dB at the power of input signal of − 40, − 20 and − 10 dBm, respectively, at an input bias current of 150 mA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The data used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amann, M.C., Thulke, W.: Current confinement and leakage currents in planar buried-ridge-structure laser diodes on n-substrate. IEEE J. Quantum Electron. 25, 1595–1602 (1989)

    Article  ADS  Google Scholar 

  • Arnould, A., Ghazisaeidi, A., Le Gac, D., Brindel, P., Makhsiyan, M., Mekhazni, K., Blache, F., Achouche, M., Renaudier, J.: Experimental characterization of nonlinear distortions of semiconductor optical amplifiers in the WDM regime. J. Lightwave Technol. 38(2), 509–513 (2020)

    Article  ADS  Google Scholar 

  • Bonk, R., Huber, G., Vallaitis, T., Koenig, S., Schmogrow, R., Hillerkuss, D., Brenot, R., Lelarge, F., Duan, G.H., Sygletos, S., Koos, C., Freude, W., Leuthold, J.: Linear semiconductor optical amplifiers for amplification of advanced modulation formats. Opt. Express 20(9), 9657–9672 (2012)

    Article  ADS  Google Scholar 

  • Brosson, P.: Analytical model of a semiconductor optical amplifier. J. Lightwave Technol. 12(1), 49–54 (1994)

    Article  ADS  Google Scholar 

  • Connelly, M.J.: Wideband semiconductor optical amplifier steady-state numerical model. IEEE J. Quantum Electron. 37(3), 439–447 (2001)

    Article  ADS  Google Scholar 

  • Connelly, M.J., Anzabi, K.S., Safari, K., Habibzadeh-Sharif, A., Rostami, A.: Wideband steady-state and pulse propagation modeling of a reflective quantum-dot semiconductor optical amplifier. J. Lightwave Technol. 38(4), 797–803 (2020)

    Article  ADS  Google Scholar 

  • Connelly, M.J., O’Dowd, R.F.: Travelling-wave semiconductor optical amplifier detector noise characteristics. Proc. Inst. Elect. Eng. J 142, 23–28 (1995)

    Google Scholar 

  • Deguet, C., Delprat, D., Crouzel, G., Traynor, N. J., Maigne, P., Pearsal, T., Lerminiaux, C., Andreakis, N., Caneau, C., Favire, F., Bhat, R., Zah, C. E.: Homogeneous buried ridge stripe semiconductor optical amplifier with near polarization independence. In: Proceedings under European Conference on Optical Communication (1999)

  • Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers. World Scientific, Singapore (2013)

    Book  Google Scholar 

  • Gillner, L.: Comparative study of some traveling-wave semiconductor laser amplifier models. Proc. Inst. Elect. Eng. J 139(5), 339–347 (1991)

    Google Scholar 

  • Kim, H.J., Song, J.I.: All-optical frequency down conversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications. Opt. Express 20(7), 8047–8054 (2012)

    Article  ADS  Google Scholar 

  • Kot, M., Zdansky, K.: Measurement of radiative and non-radiative recombination rate in InGaAsP-InP LED’s. IEEE J. Quantum Electron. 28, 1746–1750 (1992)

    Article  ADS  Google Scholar 

  • Liu, Y., Tangdiongga, E., Li, Z., de Waardt, H., Koonen, A.M.J., Khoe, G.D., Shu, X., Bennion, I., Dorren, H.J.S.: Error free 320Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. J. Lightwave Technol. 25(1), 103–108 (2007)

    Article  ADS  Google Scholar 

  • Mahmoudieh, A., Soroosh, M., Sabaeian, M.: Numerical simulation of InGaAsP-InP buried stripe semiconductor laser. In: 2014 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 496–499. IEEE (2014)

  • Marcuse, D.A.: Computer model of an injection laser amplifier. IEEE J. Quantum Electron. QE19(1), 63–73 (1983)

    Article  ADS  Google Scholar 

  • Mathlouthi, W., Lemieux, P., Salsi, M., Vannucci, A., Bononi, A., Rusch, L.A.: Fast and efficient dynamic WDM semiconductor optical amplifier model. J. Lightwave Technol. 24(11), 4353–4365 (2006)

    Article  ADS  Google Scholar 

  • Rapp, L., Eiselt, M.: Optical amplifiers for wideband optical transmission systems. In: Optical Fiber Communication Conference, pp. Th4C-1. Optica Publishing Group (2021)

  • Razaghi, M., Ahmadi, V., Connelly, M.J.: Comprehensive finite-difference time-dependent beam propagation model of counterpropagating picosecond pulses in a semiconductor optical amplifier. J. Lightwave Technol. 27(15), 3162–3174 (2009)

    Article  ADS  Google Scholar 

  • Simon, J.C., Doussiere, P., Pophillat, L., Fernier, B.: Gain and noise characteristics of a 1.5 μm near-travelling-wave semiconductor laser amplifier. Electron. Lett. 25, 434–436 (1989)

    Article  ADS  Google Scholar 

  • Suematsu, Y., Adams, A.R.: Handbook of Semiconductor Lasers and Photonic Integrated Circuits, London. Chapman & Hall, London (1994)

    Google Scholar 

  • Teixeira, A., Zoran, V., Dionísio, R.P., Shahpari, A., Pavlović, N.B.: Efficient dynamic modeling of the reflective semiconductor optical amplifier. IEEE J. Sel. Top. Quantum Electron. 19(5), 1–10 (2013)

    Google Scholar 

  • Zoiros, K.E.: Special issue on applications of semiconductor optical amplifiers. Appl. Sci. 8(7), 1–4 (2018)

    Article  Google Scholar 

Download references

Funding

The authors did not receive any funds to support this research.

Author information

Authors and Affiliations

Authors

Contributions

A.H.B. and M.H.A. have directly participated in the planning, execution, and analysis of this study. AHB drafted the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Arwa Hassan Beshr.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Moustafa H. Aly: OSA Member.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beshr, A.H., Aly, M.H. Characterization of wideband semiconductor optical amplifier: numerical analysis and simulation. Opt Quant Electron 55, 287 (2023). https://doi.org/10.1007/s11082-023-04575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04575-5

Keywords

Navigation