Skip to main content
Log in

A study of highly efficient organic light emitting transistors that outperforms organic light emitting diodes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Organic light emitting transistors (OLETs), which are used in optoelectronic devices, have progressed in recent years. Electroluminescence is a characteristic of organic light emitting diodes (OLEDs), and OLETs integrate OFET’s synchronising processes with the OLEDs. OLETs are ideal for creating the next generation of displays because of their distinctive look. OLETs, the upgraded form of OLEDs, are attracting attention these days because of its architecture, flexibility, light weight, and low cost. This review specifically looks at the process of developing high-efficiency OLETs considering different OLET structures and optimizations. In this paper, various properties, behavior characteristics, and performance parameters are taken into account. Besides this, we also present a comparison between OLEDs and OLETs. Additionally, OLET performance is examined in terms of drive current, mobility, ON–OFF current ratios, and external quantum efficiency for single and multilayer designs. It is the goal of this study to emphasise and build a better knowledge of the future design of OLETs by analysing the existing state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statements

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Ahles, M., Hepp, A., Schmechel, R., von Seggern, H.: Light emission from a polymer transistor. Appl. Phys. Lett. 84(3), 428–430 (2004)

    ADS  Google Scholar 

  • Baldo, M., Holmes, R., Forrest, S.: Prospects for electrically pumped organic lasers. Phys. Rev. B 66(3),  1–16 (2002)

    Google Scholar 

  • Bisri, S.Z., Piliego, C., Gao, J., Loi, M.A.: Outlook and emerging semiconducting materials for ambipolar transistors. Adv. Mater. 26(8), 1176–1199 (2014)

    Google Scholar 

  • Capelli, R., Toffanin, S., Generali, G., Usta, H., Facchetti, A., Muccini, M.: Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 9(6), 496–503 (2010)

    ADS  Google Scholar 

  • Chaudhry, M.U., Muhieddine, K., Wawrzinek, R., Sobus, J., Tandy, K., Lo, S.C., Namdas, E.B.: Organic light-emitting transistors: advances and perspectives. Adv. Func. Mater. 30(20), 1905282 (2020)

    Google Scholar 

  • Chaudhry, M.U., Panidi, J., Nam, S., Smith, A., Lim, J., Tetzner, K., Patsalas, P.A., Vourlias, G., Sit, W.Y., Firdaus, Y., et al.: Polymer light-emitting transistors with charge-carrier mobilities exceeding 1 cm2 v–1 s–1. Adv. Electron. Mater. 6(1),  1–38 (2020)

    Google Scholar 

  • Cicoira, F., Santato, C.: Organic light emitting field effect transistors: advances and perspectives. Adv. Funct. Mater. 17(17), 3421–3434 (2007)

    Google Scholar 

  • Dong, H., Fu, X., Liu, J., Wang, Z., Hu, W.: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25(43), 6158–6183 (2013)

    Google Scholar 

  • Gwinner, M.C., Vaynzof, Y., Banger, K.K., Ho, P.K., Friend, R.H., Sirringhaus, H.: Solution-processed zinc oxide as high-performance air-stable electron injector in organic ambipolar light-emitting field-effect transistors. Adv. Funct. Mater. 20(20), 3457–3465 (2010)

    Google Scholar 

  • Heeger, A.J., Sariciftci, N,S., Namdas, E.B.: Semiconducting and metallic polymers (2010)

  • Hepp, A., Heil, H., Weise, W., Ahles, M., Schmechel, R., Von Seggern, H.: Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91(15), 1–4 (2003)

    Google Scholar 

  • Kajiwara, K., Terasaki, K., Yamao, T., Hotta, S.: Light-emitting field-effect transistors consisting of bilayer-crystal organic semiconductors. Adv. Funct. Mater. 21(15), 2854–2860 (2011)

    Google Scholar 

  • Kaushik, B.K., Kumar, B., Prajapati, S., Mittal, P.: Organic Thin-Film Transistor Applications: Materials to Circuits. CRC Press, Boca Raton (2016)

    Google Scholar 

  • List, E., Kim, C.H., Naik, A., Scherf, U., Leising, G., Graupner, W., Shinar, J.: Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: a quantitative study. Phys. Rev. B 64(15), 1–11 (2001)

    Google Scholar 

  • Liu, C.F., Liu, X., Lai, W.Y., Huang, W.: Organic light-emitting field-effect transistors: device geometries and fabrication techniques. Adv. Mater. 30(52), e1802466-e1802466 (2018)

    Google Scholar 

  • Liu, J., Dong, H., Wang, Z., Ji, D., Cheng, C., Geng, H., Zhang, H., Zhen, Y., Jiang, L., Fu, H., et al.: Thin film field-effect transistors of 2, 6-diphenyl anthracene (dpa). Chem. Commun. 51(59), 11777–11779 (2015)

    Google Scholar 

  • Muccini, M.: A bright future for organic field-effect transistors. Nat. Mater. 5(8), 605–613 (2006)

    ADS  Google Scholar 

  • Muccini, M., Toffanin, S.: Organic Light-Emitting Transistors: Towards the Next Generation Display Technology. John Wiley and Sons, New Jersey (2016)

    Google Scholar 

  • Muccini, M., Koopman, W., Toffanin, S.: The photonic perspective of organic light-emitting transistors. Laser Photon. Rev. 6(2), 258–275 (2012)

    ADS  Google Scholar 

  • Ojha, S.K., Kumar, B.: Performance analysis and parameter extraction of organic light emitting transistor (olet). In 2020 International Conference on Electrical and Electronics Engineering (ICE3), 711–716 (2020)

  • Ojha, S.K., Kumar, B.: Parameter extraction of high-performance material based organic light-emitting transistors (olets). SILICON 14(8), 3999–4007 (2022)

    Google Scholar 

  • Oyamada, T., Sasabe, H., Adachi, C., Okuyama, S., Shimoji, N., Matsushige, K.: Electroluminescence of 2, 4-bis (4-(2’-thiophene-yl) phenyl) thiophene in organic light-emitting field-effect transistors. Appl. Phys. Lett. 86(9), 1–3 (2005)

    Google Scholar 

  • Prosa, M., Moschetto, S., Benvenuti, E., Zambianchi, M., Muccini, M., Melucci, M., Toffanin, S.: 2, 3-thienoimide-ended oligothiophenes as ambipolar semiconductors for multifunctional single-layer light-emitting transistors. J. Mater. Chem. C 8(43), 15048–15066 (2020)

    Google Scholar 

  • Rost, C., Gundlach, D.J., Karg, S., Rieß, W.: Ambipolar organic field-effect transistor based on an organic heterostructure. J. Appl. Phys. 95(10), 5782–5787 (2004)

    ADS  Google Scholar 

  • Sakanoue, T., Fujiwara, E., Yamada, R., Tada, H.: Visible light emission from polymer-based field-effect transistors. Appl. Phys. Lett. 84(16), 3037–3039 (2004)

    ADS  Google Scholar 

  • Sakanoue, T., Fujiwara, E., Yamada, R., Tada, H.: Preparation of organic light-emitting field-effect transistors with asymmetric electrodes. Chem. Lett. 34(4), 494–495 (2005)

    Google Scholar 

  • Santato, C., Manunza, I., Bonfiglio, A., Cicoira, F.: Tetracene light-emitting transistors on flexible plastic substrates. Appl. Phys. Lett. 86(14), 1–3 (2005)

    Google Scholar 

  • Santato, C., Cicoira, F., Cosseddu, P., Bonfiglio, A., Bellutti, P., Muccini, M., Zamboni, R., Rosei, F., Mantoux, A., Doppelt, P.: Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer. Appl. Phys. Lett. 88(16), 1–3 (2006)

    Google Scholar 

  • Sawabe, K., Takenobu, T., Bisri, S.Z., Yamao, T., Hotta, S., Iwasa, Y.: High current densities in a highly photoluminescent organic single-crystal light-emitting transistor. Appl. Phys. Lett. 97(4), 1–3 (2010)

    Google Scholar 

  • Smith, D., Ruden, P.: Analytic device model for light-emitting ambipolar organic semiconductor field-effect transistors. Appl. Phys. Lett. 89(23), 1–3 (2006)

    Google Scholar 

  • Soldano, C.: Engineering dielectric materials for high-performance organic light emitting transistors (olets). Materials 14(13), 1–34 (2021)

    Google Scholar 

  • Staudigel, J., Stößel, M., Steuber, F., Simmerer, J.: A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes. J. Appl. Phys. 86(7), 3895–3910 (1999)

    ADS  Google Scholar 

  • Swensen, J.S., Soci, C., Heeger, A.J.: Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87(25), 1–3 (2005)

    Google Scholar 

  • Swensen, J.S., Yuen, J., Gargas, D., Buratto, S.K., Heeger, A.J.: Light emission from an ambipolar semiconducting polymer field effect transistor: Analysis of the device physics. J. Appl. Phys. 102(1), 1–5 (2007)

    Google Scholar 

  • Takenobu, T., Bisri, S.Z., Takahashi, T., Yahiro, M., Adachi, C., Iwasa, Y.: High current density in light-emitting transistors of organic single crystals. Phys. Rev. Lett. 100(6), 1–4 (2008)

    Google Scholar 

  • Toffanin, S., Capelli, R., Koopman, W., Generali, G., Cavallini, S., Stefani, A., Saguatti, D., Ruani, G., Muccini, M.: Organic light-emitting transistors with voltage-tunable lit area and full channel illumination. Laser Photon. Rev. 7(6), 1011–1019 (2013)

    ADS  Google Scholar 

  • Ullah, M., Tandy, K., Yambem, S.D., Aljada, M., Burn, P.L., Meredith, P., Namdas, E.B.: Simultaneous enhancement of brightness, efficiency, and switching in rgb organic light emitting transistors. Adv. Mater. 25(43), 6213–6218 (2013)

    Google Scholar 

  • Wakayama, Y., Hayakawa, R., Seo, H.S.: Recent progress in photoactive organic field-effect transistors. Sci. Technol. Adv. Mater. 15(2), 1–19 (2014)

    Google Scholar 

  • Walker, B., Ullah, M., Chae, G.J., Burn, P.L., Cho, S., Kim, J.Y., Namdas, E.B., Seo, J.H.: High mobility solution-processed hybrid light emitting transistors. Appl. Phys. Lett. 105(18), 1–4 (2014)

    Google Scholar 

  • Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D.: Semiconducting \(\pi\)-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112(4), 2208–2267 (2012)

    Google Scholar 

  • Wang, Q., Jiang, S., Qian, J., Song, L., Zhang, L., Zhang, Y., Zhang, Y., Wang, Y., Wang, X., Shi, Y., et al.: Low-voltage, high-performance organic field-effect transistors based on 2d crystalline molecular semiconductors. Sci. Rep. 7(1), 1–8 (2017)

    ADS  Google Scholar 

  • Yamamoto, H., Oyamada, T., Sasabe, H., Adachi, C.: Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84(8), 1401–1403 (2004)

    ADS  Google Scholar 

  • Yamao, T., Shimizu, Y., Terasaki, K., Hotta, S.: Organic light-emitting field-effect transistors operated by alternating-current gate voltages. Adv. Mater. 20(21), 4109–4112 (2008)

    Google Scholar 

  • Yamao, T., Sakaguchi, T., Juri, K., Doi, H., Kamoi, A., Suganuma, N., Hotta, S.: Improvements of morphologies and emission characteristics of highly purified organic oligomer semiconductors. Thin Solid Films 518(2), 489–492 (2009)

    ADS  Google Scholar 

  • Yuan, D., Sharapov, V., Liu, X., Yu, L.: Design of high-performance organic light-emitting transistors. ACS Omega 5(1), 68–74 (2019)

    Google Scholar 

  • Zaumseil, J.: Recent developments and novel applications of thin film, light-emitting transistors. Adv. Func. Mater. 30(20), 1–20 (2020)

    Google Scholar 

  • Zaumseil, J., Donley, C.L., Kim, J.S., Friend, R.H., Sirringhaus, H.: Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 18(20), 2708–2712 (2006)

    Google Scholar 

  • Zaumseil, J., Friend, R.H., Sirringhaus, H.: Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 5(1), 69–74 (2006)

    ADS  Google Scholar 

  • Zhang, C., Chen, P., Hu, W.: Organic light-emitting transistors: materials, device configurations, and operations. Small 12(10), 1252–1294 (2016)

    Google Scholar 

  • Zhou, K., Liu, J., Dong, H., Ding, S., Zhen, Y., Shi, Y., Hu, W.: Enhanced ambipolar charge transport for efficient organic single crystal light-emitting transistors with a narrowed ambipolar regime. J. Mater. Chem. C 8(46), 16333–16338 (2020)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan Sharma.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Abbas, B. A study of highly efficient organic light emitting transistors that outperforms organic light emitting diodes. Opt Quant Electron 55, 338 (2023). https://doi.org/10.1007/s11082-022-04525-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04525-7

Keywords

Navigation