Skip to main content

Advertisement

Log in

Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Plasmodium falciparum infections are the most common cause of malaria-related deaths. A significant difference between red blood cells with and without infection can be seen in their refractive indices, which can be used as a key indicator in the diagnosis of this disease. In this manuscript, a surface plasmon resonance (SPR)-based biosensor is suggested theoretically for the detection of infected red blood cells (IRBCs) with Plasmodium Falciparum. The proposed SPR sensor has the configuration: BK7 prism/Ag/BiFeO3/2D-nanomaterials/analyte. The suggested SPR sensor has a (BiFeO3) layer located between the metal (Ag) and 2D-nanomaterials to realize higher sensitivity. BiFeO3 layer exhibits outstanding characteristics, such as high index of refraction and small loss and has shown a significant shift in resonance angle within a minute variation in the analyte’s refractive index. A variety of 2D materials, including MXene, Graphene, and Black Phosphor, are used to cover the surface of the SPR structure in order to develop the efficiency of the detector. The suggested detector can demonstrate an extremely high sensitivity of 461.43 deg/RIU by adjusting the thicknesses of Ag, BiFeO3, and the quantity of 2D-nanomaterial layers. The suggested SPR-based biosensor is hopeful for use in various sectors of biosensing due to its extraordinarily high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  • Akpa Marcel, A., Konan, K., Tokou, Z., Kossonou, Y., Dion, S., Kaduki, K., Zoueu, J.: Malaria-infected red blood cell analysis through optical and biochemical parameters using the transport of intensity equation and the microscope’s optical properties. Sensors 19, 3045 (2019). https://doi.org/10.3390/s19143045

    Article  ADS  Google Scholar 

  • Almawgani, A.H.M., Taya, S.A., Daher, M.G., Colak, I., Wu, F., Patel, S.K.: Detection of glucose concentration using a surface plasmon resonance biosensor based on barium titanate layers and molybdenum disulphide sheets. Phys. Scr. 97, 065501 (2022a)

    Article  ADS  Google Scholar 

  • Almawgani, A.H.M., Daher, M.G., Taya, S.A., Mashagbeh, M., Colak, I.: Optical detection of fat concentration in milk using MXene-based surface plasmon resonance structure. Biosensors 12, 535 (2022b). https://doi.org/10.3390/bios12070535

    Article  Google Scholar 

  • Almawgani, A.H.M., Daher, M.G., Taya, S.A., Olaimat, M.M., Alhawari, A.R.H., Colak, I. Detection of blood plasma concentration theoretically using SPR-based biosensor employing black phosphor layers and different metals. Plasmonics (2022c)

  • Avsar, A., Vera-Marun, I.J., Tan, J.Y., et al.: Air-stable transport in graphene-contacted, fully encapsulated ultra-thin black phosphorus-based field-effect transistors. ACS Nano 9(4), 4138–4145 (2015)

    Article  Google Scholar 

  • Bai, Y., Zhou, K., Narasimalu, S., Pang, J., He, X., Wang, R.: Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Adv. 6, 35731–35739 (2016)

    Article  ADS  Google Scholar 

  • Bendib, S., Bendib, C.: Photonic crystals for malaria detection. J. Biosens. Bioelectron. (2018). https://doi.org/10.4172/2155-6210.1000257

    Article  Google Scholar 

  • Bilal, M., Saleem, M., Amanat, S., Shakoor, H., Rashid, R., Mahmood, A., Ahmed, M.: Optical diagnosis of malaria infection in human plasma using Raman spectroscopy. J. Biomed. Opt. 20(1), 17002 (2015). https://doi.org/10.1117/1.JBO.20.1.017002

    Article  Google Scholar 

  • Churchill, H.O., Jarilloherrero, P.: Two-dimensional crystals: phosphorus joins the family. Nat. Nanotechnol. 9(5), 330–331 (2014)

    Article  ADS  Google Scholar 

  • Daher, M.G., Taya, S.A., Colak, I., Patel, S.K., Olaimat, M.M., Ramahi, O.: Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J. Biophotonics 15, e202200001 (2022a)

    Article  Google Scholar 

  • Daher, M.G., Trabelsi, Y., Ahmed, N.M., et al.: Detection of basal cancer cells using photodetector based on a novel surface plasmon resonance nanostructure employing perovskite layer with an ultra high sensitivity. Plasmonics 17, 2365–2373 (2022b)

    Article  Google Scholar 

  • Daher, M.G., Taya, S.A., Colak, I., Vigneswaran, D., Olaimat, M.M., Patel, S.K., Ramahi, O.M., Almawgani, A.H.M.: Design of a nano-sensor for cancer cell detection based on a ternary photonic crystal with high sensitivity and low detection limit. Chin. J. Phys. 77, 1168–1181 (2022c)

    Article  MathSciNet  Google Scholar 

  • Daher, M.G., Taya, S.A., Colak, I., et al.: Design of a novel optical sensor for the detection of waterborne bacteria based on a photonic crystal with an ultra-high sensitivity. Opt. Quantum Electron. 54, 108 (2022d). https://doi.org/10.1007/s11082-021-03486-7

    Article  Google Scholar 

  • Daher, M.G., Jaroszewicz, Z., Zyoud, S.H., et al.: Design of a novel detector based on photonic crystal nanostructure for ultra-high performance detection of cells with diabetes. Opt. Quantum Electron. 54, 701 (2022e). https://doi.org/10.1007/s11082-022-04093-w

    Article  Google Scholar 

  • Elias, D.C., Gorbachev, R.V., Mayorov, A.S., Morozov, S.V., Zhukov, A.A., Blake, P., Ponomarenko, L.A., Grigorieva, I.V., Novoselov, K.S., Guinea, F., Geim, A.K.: Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011)

    Article  Google Scholar 

  • Huang, D.J., Deng, H.M., Chen, F., Deng, H., Yang, P.X., Chu, J.H.: Optical properties of BiFeO3 and Bi 0.9La0.1 FeO3 flms on silicon substrates. J. Phys. 276(1), 012168 (2011). https://doi.org/10.1088/1742-6596/276/1/012168

    Article  Google Scholar 

  • Jha, R., Sharma, A.K.: Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region. J. Opt. A Pure Appl. Opt. 11, 045502 (2009)

    Article  ADS  Google Scholar 

  • Jia, Y., Li, Z., Wang, H., Saeed, M., Cai, H.: Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors 20(1), 131 (2020). https://doi.org/10.3390/s20010131

    Article  ADS  Google Scholar 

  • Krampa, F., Aniweh, Y., Kanyong, P., Awandare, G.: Recent advances in the development of biosensors for malaria diagnosis. Sensors 20, 799 (2020). https://doi.org/10.3390/s20030799

    Article  ADS  Google Scholar 

  • Kumar, R., Pal, S., Prajapati, Y.K., Kumar, S., Saini, J.P.: Sensitivity improvement of a MXene- immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sensors J 22(7), 6536–6543 (2022). https://doi.org/10.1109/JSEN.2022.3154099

    Article  ADS  Google Scholar 

  • Li, L., Yu, Y., Ye, G.L., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)

    Article  ADS  Google Scholar 

  • Lin, Z., Jiang, L., Wu, L., Guo, J., Dai, X., Xiang, Y., Fan, D.: Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au MoS2-Au films. IEEE Photon. J. 8(6), 1–8 (2016)

    Article  Google Scholar 

  • Liu, P.Y., Chin, L.K., Ser, W., Chen, H., Hsieh, C.-M., Lee, C.-H., Sung, K.-B., Ayi, T., Yap, P., Liedberg, B., Wang, K., Bourouina, T., Leprince-Wang, Y.: Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16(4), 634–644 (2016). https://doi.org/10.1039/c5lc01445j

    Article  Google Scholar 

  • Maharana, P.K., Bhardwaj, S., Jha, R.: Electric field enhancement in surface plasmon resonance bimettalic configuration based on chalcogenide prism. J. Appl. Phys. 114, 014304–014314 (2013)

    Article  ADS  Google Scholar 

  • Mao, N., et al.: optical anisotropy of BP in the visible regime. J. Am. Chem. Soc. 138(1), 300–305 (2016)

    Article  Google Scholar 

  • Maurya, J.B., Prajapati, Y.K.: A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt. Quantum Electron. 48, 280 (2016)

    Article  Google Scholar 

  • Molina-Franky, J., Cuy-Chaparro, L., Camargo, A., Reyes, C., Gómez, M., Salamanca, D., Patarroyo, M., Patarroyo, M.: Plasmodium falciparum pre-erythrocytic stage vaccine development. Malar. J. 19(1), 1–18 (2020). https://doi.org/10.1186/s12936-020-3141-z

    Article  Google Scholar 

  • Mudgal, N., Saharia, A., Agarwal, A., Ali, J., Yupapin, P., Singh, G.: Modeling of highly sensitive surface plasmon resonance (SPR) sensor for urine glucose detection. Opt. Quantum Electron. 52(6), 1–14 (2020)

    Article  Google Scholar 

  • Mudgal, N., Saharia, A., Choure, K.K., et al.: Sensitivity enhancement with anti-reflection coating of silicon nitride (Si3N4) layer in silver-based surface plasmon resonance (SPR) sensor for sensing of DNA hybridization. Appl. Phys. A 126, 946 (2020). https://doi.org/10.1007/s00339-020-04126-9

    Article  ADS  Google Scholar 

  • Nureye, D., Assefa, S.: Old and recent advances in life cycle, pathogenesis, diagnosis, prevention, and treatment of malaria including perspectives in ethiopia. Sci. World J. 2020, 1–17 (2020). https://doi.org/10.1155/2020/1295381

    Article  Google Scholar 

  • Nurrohman, D.T., Chiu, N.-F.: Surface plasmon resonance biosensor performance analysis on 2D material based on graphene and transition metal dichalcogenides. ECS J. Solid State Sci. Technol. 9, 115023 (2020)

    Article  ADS  Google Scholar 

  • Pal, A., Jha, A.: A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik 231, 166378 (2021). https://doi.org/10.1016/j.ijleo.2021.166378

    Article  ADS  Google Scholar 

  • Pal, S., Prajapati, Y.K., Saini, J.P.: Influence of grapheme’chemical potential on SPR biosensor using ZnO for DNA hybridization. Opt. Rev. 27, 57–64 (2020)

    Article  Google Scholar 

  • Panda, A., Daher, M.G., Pukhrambam, P.D., et al.: Study of titanium nitride (TiN) as a novel plasmonic material for realization of Tamm-plasmon-polariton-based blood plasma sensor. Opt. Quantum Electron. 54, 796 (2022). https://doi.org/10.1007/s11082-022-04191-9

    Article  Google Scholar 

  • Papich, M.G.: Kanamycin Sulfatein: Saunders Handbook of Veterinary Drug. Elsevier, London (2016)

    Google Scholar 

  • Peng, Q., Wang, Z., Sa, B., Wu, B., Sun, Z.: Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 6, 1–10 (2016)

    Google Scholar 

  • Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layerblack phosphorus. Nat. Commun. 5, 4475 (2014)

    Article  ADS  Google Scholar 

  • Ragavan, K.V., Kumar, S., Swaraj, S., Neethirajan, S.: Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosens. Bioelectron. 105, 188–210 (2018). https://doi.org/10.1016/j.bios.2018.01.037

    Article  Google Scholar 

  • Rodin, A.S., Carvalho, A., Castro Neto, A.H.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112(17), 176801–176801 (2014)

    Article  ADS  Google Scholar 

  • Srivastava, T., Jha, R.: Black phosphorus: A new platform for gaseous sensing based on surface plasmon resonance. IEEE 99, 1–1 (2018)

    Google Scholar 

  • Srivastava, T., Purkayastha, A., Jha, R.: Graphene based surface plasmon resonance gas sensor for terahertz. Opt. Quantum Electron. 48(6), 334 (2016)

    Article  Google Scholar 

  • Taya, S.A., Al-Ashi, N.E., Ramahi, O.M., Colak, I., Amiri, I.S.: Surface plasmon resonance-based optical sensor using a thin layer of plasma. J. Opt. Soc. Am. B 38, 2362–2337 (2021)

    Article  ADS  Google Scholar 

  • Uniyal, A., Chauhan, B., Pal, A.: Bi-metallic films of gold, MXene, and graphene nano film-based surface plasmon resonance sensor for malaria detection: a numerical analysis (2022). https://doi.org/10.21203/rs.3.rs-1766754/v1

  • Vasimalla, Y., Pradhan, H.S.: A highly performed SPR biosensor based on bismuth ferrite-bromide materials-BP/graphene hybrid structure. Opt. Quantum Electron. 53, 695 (2021). https://doi.org/10.1007/s11082-021-03347-3

    Article  Google Scholar 

  • Wang, X., Jones, A.M., Seyler, K.L., Tran, V., Jia, Y., Zhao, H., Wang, H., Yang, L., Xu, X., Xia, F.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2014)

    Article  ADS  Google Scholar 

  • Wu, L., You, Q., Shan, Y., Gan, S., Zhao, Y., Dai, X., Xiang, Y.: Few layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance sensitivity. Sens. Actuators B Chem. 277, 210–215 (2018)

    Article  Google Scholar 

  • Yupapin, P., Trabelsi, Y., Vigneswaran, D., Taya, S.A., Daher, M.G., Colak, I.: Ultra-high-sensitive sensor based on surface plasmon resonance structure having Si and graphene layers for the detection of chikungunya virus. Plasmonics 17, 1315–1321 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MGD; Data curation, Formal analysis, Investigation, MGD, YT, and YKP; Methodology, MGD, YT, and AP; Resources, Software, MGD,YT, and AP; Supervision, Validation, NMA and ANZR; Visualization, Writing-original draft, MGD and ANZR; Writing—review editing,

Corresponding author

Correspondence to Malek G. Daher.

Ethics declarations

Conflict of interest

No competing interests.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daher, M.G., Trabelsi, Y., Prajapati, Y.K. et al. Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure. Opt Quant Electron 55, 199 (2023). https://doi.org/10.1007/s11082-022-04466-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04466-1

Keywords

Navigation