Skip to main content
Log in

New structure for an all-optical logic gate based on hybrid plasmonic square-shaped nanoring resonators and strips

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Seven all-optical logic gates based on hybrid plasmonic squared-shaped nanoring resonators and strips are proposed, designed, and numerically analyzed using finite element method with COMSOL software package version 5.5. Constructive and destructive interferences between the input port(s) and the control port(s) are the main operating principles used to produce the proposed gates. The ratio of output optical power to the input power at a single port which is called the transmission threshold is selected to be 30% and the resonance wavelength is 1310 nm. All the hybrid plasmonic logic gates are performed in a single structure of 400 nm × 400 nm dimensions and the performance is measured according to the values of transmission at the output port versus a wavelength range from 800 to 2000 nm, contrast ratio, modulation depth, and insertion loss. The transmission exceeds 100% in five gates, 146% at NOT and NAND gates, 202.3% at OR, AND, and XNOR gates. The modulation depth scores are 99.75% at the XNOR gate, 98.5% at the NOR gate, 97.67% at OR, AND, NOT, and NAND gates, and 95.29% for the XOR gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abbas, M.N., Abdulnabi, S.H.: Plasmonic reversible logic gates. J. Nanophotonics 14, 016003 (2020)

    Article  ADS  Google Scholar 

  • Abdulnabi, S.H., Abbas, M.N.: All-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides at optical communications band. J. Nanophotonics 13, 016009 (2019)

    Article  ADS  Google Scholar 

  • Abdulnabi, S.H., Abbas, M.N.: Design and simulation of an all-optical 2 × 1 plasmonic multiplexer. J. Nanophotonics 16, 016009 (2022)

    Article  ADS  Google Scholar 

  • Alam, M.Z.: Hybrid Plasmonic Waveguides: Theory and Applications. University of Toronto (Canada) (2012)

  • Alam, M.Z., Aitchison, J.S., Mojahedi, M.: Theoretical analysis of hybrid plasmonic waveguide. IEEE J. Sel. Top. Quantum Electron. 19, 4602008 (2013)

    Article  ADS  Google Scholar 

  • Alam, M.Z., Meier, J., Aitchison, J.S., Mojahedi, M.: Super mode propagation in low index medium. In: Quantum Electronics and Laser Science Conference JThD112. Optical Society of America (2007)

  • Alwahib, A.A., Kamil, Y.M., Bakar, M.H.A., Mahdi, M.A., Suhailin, F.H.: Optical detection of lead ion with surface Plasmon resonance configurations. In: 2020 IEEE 8th International Conference on Photonics (ICP), pp. 9–10. IEEE (2020)

  • Alwahib, A.A., Hasan, S.M., Hubeatir, K.A.: A surface plasmon temperature sensor based on E7 liquid crystal using angle interrogation method. J. Electromagn. Waves Appl. 36(2), 213–227 (2021)

  • Alwahib, A.A., Al-Rekabi, S.H., Muttlak, W.H.: Comprehensive study of generating sharp dip using numerical analysis in prism based surface plasmon resonance. In: AIP Conference Proceedings, vol. 2213, p. 020143. AIP Publishing LLC (2020)

  • Bandyopadhyay, S., et al.: Effect of reaction parameters on γ-AlON formation from Al2O3 and AlN. J. Am. Ceram. Soc. 85, 1010–1012 (2002)

    Article  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength Optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Bian, Y., Gong, Q.: Compact all-optical interferometric logic gates based on one-dimensional metal–insulator–metal structures. Opt. Commun. 313, 27–35 (2014)

    Article  ADS  Google Scholar 

  • Breukelaar, I.G.: Surface plasmon-polaritons in thin metal strips and slabs: Waveguiding and mode cutoff. MA Sc. thesis (Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada, 2004) (2004)

  • Christopoulos, T., Sinatkas, G., Tsilipakos, O., Kriezis, E.E.: Bistable action with hybrid plasmonic Bragg-grating resonators. Opt. Quant. Electron. 48, 1–17 (2016)

    Article  Google Scholar 

  • Cui, L., Yu, L.: Multifunctional logic gates based on silicon hybrid plasmonic waveguides. Mod. Phys. Lett. B 32, 1850008 (2018)

    Article  ADS  Google Scholar 

  • Dai, D., He, S.: A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 17, 16646–16653 (2009)

    Article  ADS  Google Scholar 

  • Dolatabady, A., Granpayeh, N.: All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator. J. Nanophoton. 11, 026001 (2017)

    Article  ADS  Google Scholar 

  • Freeman, E.A., Moisen, G.G.: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 217, 48–58 (2008)

    Article  Google Scholar 

  • French, R.H. et al.: Optical properties of materials for concentrator photovoltaic systems. In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), pp. 394–399. IEEE (2009)

  • Fujii, M., Leuthold, J., Freude, W.: Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photon. Technol. Lett. 21, 362–364 (2009)

    Article  ADS  Google Scholar 

  • Gong, Y., Wang, L., Hu, X., Li, X., Liu, X.: Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide. Opt. Express 17, 13727–13736 (2009)

    Article  ADS  Google Scholar 

  • Guo, Y.J., da Xu, K., Liu, Y., Tang, X.: Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters. IEEE Access 6, 10249–10256 (2018)

    Article  Google Scholar 

  • Hartnett, T.M., Bernstein, S.D., Maguire, E.A., Tustison, R.W.: Optical properties of ALON (aluminum oxynitride). In: Window and Dome Technologies and Materials V, vol. 3060, pp. 284–295. International Society for Optics and Photonics (1997)

  • Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  Google Scholar 

  • Johnson, P.B., Christy, R.W.J.P.: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  • Lee, I., Jung, J., Park, J., Kim, H., Lee, B.: Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves. Opt. Express 15, 16596–16603 (2007)

    Article  ADS  Google Scholar 

  • Lin, X.-S., Huang, X.-G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33, 2874–2876 (2008)

    Article  ADS  Google Scholar 

  • Liu, Y., et al.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19, 1945–1953 (2011)

    Article  ADS  Google Scholar 

  • Maier, S.A.: Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides. Opt. Commun. 258, 295–299 (2006)

    Article  ADS  Google Scholar 

  • Maier, S.A., Kik, P.G., Atwater, H.A.: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716 (2002)

    Article  ADS  Google Scholar 

  • Maksymov, I.S.: Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities. Phys. Lett. A 375, 918–921 (2011)

    Article  ADS  Google Scholar 

  • Mossayebi, M., et al.: Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method. Opt. Quant. Electron. 48, 1–11 (2016)

    Article  Google Scholar 

  • Ooi, K.J.A., Chu, H.S., Bai, P., Ang, L.K.: Electro-optical graphene plasmonic logic gates. Opt. Lett. 39, 1629–1632 (2014)

    Article  ADS  Google Scholar 

  • Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon. 2, 496–500 (2008)

    Article  Google Scholar 

  • Pan, D., Wei, H., Xu, H.: Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt. Express 21, 9556–9562 (2013)

    Article  ADS  Google Scholar 

  • Peng, Z., et al.: A novel all-optical logic gate device based on a hybrid plasmonic waveguide on silicon-on-insulator chip. Nanosci. Nanotechnol. Lett. 5, 264–266 (2013a)

    Article  Google Scholar 

  • Peng, X., Li, H., Wu, C., Cao, G., Liu, Z.: Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013b)

    Article  ADS  Google Scholar 

  • Rezaei, M.H., Zarifkar, A., Miri, M., Alighanbari, A.: Design of a high-efficient and ultra-compact full-adder based on graphene-plasmonic structure. Superlattices Microstruct. 129, 139–145 (2019)

    Article  ADS  Google Scholar 

  • Sharma, P., Kumar, V.D.: All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photon. Technol. Lett. 30, 959–962 (2018)

    Article  ADS  Google Scholar 

  • Wang, L., et al.: Optical quasi logic gates based on polarization-dependent four-wave mixing in subwavelength metallic waveguides. Opt. Express 21, 14442–14451 (2013)

    Article  ADS  Google Scholar 

  • Wang, S.M., et al.: A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide. Nat. Commun. 7, 1–5 (2016)

    ADS  Google Scholar 

  • Yarahmadi, M., Moravvej-Farshi, M.K., Yousefi, L.: Subwavelength graphene-based plasmonic THz switches and logic gates. IEEE Trans. Terahertz Sci. Technol. 5, 725–731 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose. All authors read and approved the final manuscript. The datasets and curves generated during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif H. Abdulwahid.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulwahid, S.H., Wadday, A.G. & Sattar, S.M.A. New structure for an all-optical logic gate based on hybrid plasmonic square-shaped nanoring resonators and strips. Opt Quant Electron 54, 607 (2022). https://doi.org/10.1007/s11082-022-04018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04018-7

Keywords

Navigation