Skip to main content
Log in

All-Optical Logic Gates Using a Plasmonic MIM Waveguide and Elliptical Ring Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

All-optical logic gates OR, XOR, AND, and NOT based on two-dimensional (2D) plasmonic metal-insulator-metal (MIM) coupled with an elliptical ring resonator (ERR) are presented, simulated, and investigated by using the numerical method of the FEM (finite elements method). The results are compared and validated with the finite difference time domain (FDTD) method. The proposed logic gates are achieved with the same structure using the constructive and destructive optical interferences between a control signal and input signal(s). Their characterization was mainly done for two spectral regions, visible and near-infrared. A high-intensity contrast ratio (CR) between the logic states (“1” and “0”) can be achieved (28 dB) at these spectral regions. We introduce a new parameter, “gap-threshold ratio (GTR),” to characterize the gap between the maximum and minimum of the transmitted signal intensity for all logic gates. The suggested value of transmission threshold between logic “0” and logic “1” states is \(T_{th}=0.2\). A comparison of the two parameters, CR and GTR, with previous works shows that the proposed structure gives very good results for all logic gates configurations. The proposed all-optical logic gates configuration can be a key component in optical processing and telecommunication devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Beheshti N, Burmeister E, Ganjali Y (2010) Optical packet buffers for backbone internet routers. IEEE/ACM Trans Networking 18(5):1599–1609

    Article  Google Scholar 

  2. Maier SA (2006) Plasmonics: the promise of highly integrated optical devices. IEEE Journal of Selected Topics In Quantum Electronics 12(6):1671–1677

    Article  CAS  Google Scholar 

  3. Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. OSA Publishing, Opt Express 19(4):3513

    Article  CAS  Google Scholar 

  4. Zhu JH, Qi JW, Shum P, Guang Huang X (2011) A simple nanometeric plasmonic narrow-band filter structure based on metal-insulator-metal waveguide. IEEE Trans Nanotechnol 10(6):1371–1376

    Article  Google Scholar 

  5. Jonsson M (2003) Optical interconnection technology in switches, routers, and optical cross-connects. SPIE Optical Networks Magazine 4(4):20–34

    Google Scholar 

  6. Younis RM, Areed NFF, Obayya SSA (2014) Fully integrated AND and OR optical logic gates. IEEE Photon Technol Lett 26(19):1900–1903

    Article  Google Scholar 

  7. Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photon 1:303–305

    Article  CAS  Google Scholar 

  8. Shaik EH, Rangaswamy N (2015) Design of photonic crystal-based all-optical AND gate using T-shaped waveguide. J Mod Opt 63:941–949

    Article  Google Scholar 

  9. Rani P, Kalra Y, Sinha RK (2013) Realization of AND gate in Y-shaped photonic crystal waveguide. Opt Commun 298–299:227–231

    Article  Google Scholar 

  10. Pan D, Wei H, Xu HX (2013) Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express 21:9556–9562

    Article  Google Scholar 

  11. Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12(11):5784–5790

    Article  CAS  Google Scholar 

  12. Chau YFC (2021) Multiple-mode bowtie cavities for refractive index and glucose sensors working in visible and near-infrared wavelength ranges. Plasmonics pp. 1557–1963

  13. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  14. Anker JN, Hall WP, Lyandres O, Shah NC (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  15. Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69

    Article  CAS  Google Scholar 

  16. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  17. Fakhrulden FH, Mansour TS (2020) Design and simulation of plasmonic NOT gate based on insulator-metal-insulator (IMI) waveguides. Advanced Electromagnetics 9(1)

  18. Bian Y, Gong Q (2014) Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures. Opt Commun 313:27–35

    Article  CAS  Google Scholar 

  19. Zafar R, Nawaz S, Salim M (2018) Fano resonance excited all-optical XOR, XNOR, and NOT gates with high contrast ratio. Plasmonics 13:1987–1994

    Article  CAS  Google Scholar 

  20. Moradi M, Danaie M, Orouji AA (2019) Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt Quant Electron 51(5):154

    Article  Google Scholar 

  21. Dolatabady A, Granpayeh N (2012) All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators. J Opt Soc Korea 16:432–442

    Article  Google Scholar 

  22. Fakhrulden FH, Mansour TS (2018) All-optical NoT gate based on nanoring silver-air plasmonic waveguide. Int J Eng Technol 7:2818–2821

    Article  Google Scholar 

  23. Dolatabady A, Granpayeh N (2017) All-optical logic gates in plasmonic metal-insulator-metal nanowaveguide with slot cavity resonator. J Nanophotonics 11(2):026001

    Article  Google Scholar 

  24. Nagpal P, Lindquist NC, Oh SH, Norris DJ (2009) Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325(5940):594–597

    Article  CAS  Google Scholar 

  25. Vesseur EJR, Waele RD, Lezec HJ, Atwater HA, Garcia de Abajo FJ, Ploman A (2008) Surface plasmon polaritons modes in a single crystal Au nanoresonator fabricated using focused-ion-beam milling. Appl Phys Lett 92:083110-1-083110–3

    Article  Google Scholar 

  26. Cai Y, Li Y, Nordlander P, Cremer PS (2012) Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances. Nano Lett. 12:4881–4888

    Article  CAS  Google Scholar 

  27. Yurkin MA (2013) Computational approaches for plasmonics, in Handbook of Molecular Plasmonics. ed. by F. Della Sala, S. D’Agostino. Pan Stanford Publishing, Singapore pp. 83–135

  28. Panindre P, Kumar S (2016) Effect of rounding corners on optical resonances in single-mode sharp-cornered microresonators. Opt Lett 41:878–881

    Article  Google Scholar 

  29. Tian M, Lu P, Chen L, Lv C, Liu DM (2011) A subwavelength MIM waveguide resonator with an outer portion smooth bend structure. Opt Commun 284(16–17):4078–4081

    Article  CAS  Google Scholar 

  30. El Haffar R, Farkhsi A, Mahboub O (2020) Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl Phys A 126:486

    Article  Google Scholar 

  31. Veronis G, Fan SH (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87(13):131102

    Article  Google Scholar 

  32. Shibayama J, Kawai H, Yamauchi J, Nakano H, Shibayama J (2019) Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Opt Commun 452:360–365

    Article  CAS  Google Scholar 

  33. Han Z, He S (2007) Two-dimensional model for three-dimensional index-guided multimode plasmonic waveguides and the design of ultrasmall multimode interference split. Appl Opt 46(25)

  34. Xiaoyu Y, Ertian H, Mengmeng W, Yifei W, Feng W, Shubin Y (2019) Fano resonance in a MIM waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 19(22):4972

    Article  Google Scholar 

  35. Mahboub O, El Haffar R, Farkhsi A (2018) Optical fano resonance in MIM waveguides with a double splits ring resonator. Int J Microgr Opt Technol 13:181–187

    Google Scholar 

  36. Chen Z, Yu Y, Wang Y, Guo N, Xiao L (2020) Compact plasmonic structure induced mode excitation and Fano resonance. Plasmonics 15:2177–2183

    Article  CAS  Google Scholar 

  37. Gao L, Lemarchand F, Lequime M (2013) Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. J Eur Opt Soc Rapid Publications 8:13010

    Article  Google Scholar 

  38. Su H, Yan S, Yang X, Guo J, Wang J, Hua E (2020) Sensing features of the Fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity. Appl Sci 10:5096

    Article  CAS  Google Scholar 

  39. Parsons J, Burrows CP, Sambles JR, Barnes WL (2010) A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. J Mod Opt 57(5):356–365

    Article  CAS  Google Scholar 

  40. Abudlnabi SH, Abbas MN (2019) All-optical logic gates based on nanoring insulator-metal-insulator plasmonic waveguides at optical communications band. J Nanophotonics Opt 13:016009

    Google Scholar 

  41. Subhalakshmi G, Robinson S (2018) Design and analysis of optical logic gate using two dimension photonic crystal. IEEE International Conference on Current Trends toward Converging Technologies, Coimbatore, India

Download references

Acknowledgements

The authors would especially like to thank Pr. Youssef El Hafidi for the useful discussion

Author information

Authors and Affiliations

Authors

Contributions

Rida El Haffar and Oussama Mahboub conceived of the presented idea. Rida El Haffar performed the computations. Mustapha Figuigue performed the comparaison with other works. Oussama Mahboub verified the analytical methods, defined the characterization concept and supervised the findings of this work. Abdelkrim Farkhsi encouraged Rida El Haffar to investigate other logic gates configurations. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Oussama Mahboub.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

All authors gave their consent to participate.

Consent for Publication

All authors gave their consent for publication.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Haffar, R., Mahboub, O., Farkhsi, A. et al. All-Optical Logic Gates Using a Plasmonic MIM Waveguide and Elliptical Ring Resonator. Plasmonics 17, 831–842 (2022). https://doi.org/10.1007/s11468-021-01567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01567-7

Keywords

Navigation