Skip to main content
Log in

Analysis of femtosecond microstructured Poly Lactic Acid temporary cell scaffolds, spin-coated with Chitosan or Hydroxyapatite

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Temporary biocompatible and degradable cell scaffolds - the new weapon of tissue engineering in the face of personalized medicine are emerging as one of the most powerful tools for guided self-regeneration of injured, diseased or malfunctioning tissues. In the current study, CPA Ti:sapphire fs laser system (τ = 150 fs, λ = 800 nm, ѵ=0.5 kHz) was used for surface modification of Poly Lactic Acid (PLA) temporary cell scaffolds at fluence F = 0.8 J/cm2 and scanning velocity V = 3.8 mm/s. Additional thin layer of chitosan (Ch)/hydroxyapatite (HAp) (up to 30 ÷ 60 nm thickness) was deposited on the laser-modified PLA matrices by spin coating method for cell scaffolds surface functionalization. In order to observe the complementary impact of fs structuring and spin coating on the PLA scaffolds’ properties, both surface modification methods were applied on the prepared by compression molding PLA samples. Each laser processed sample was analyzed in respect of the corresponding control – laser-treated and untreated PLA surface, spin-coated with Ch or HAp. The microstructured scaffolds were characterized by SEM, EDX, FTIR, roughness, and WCA analyses. The results obtained from characterization of scaffold properties, show that such combined methods application for functionalization of the bone PLA scaffolds could be applied to improve the biocompatibility of the as created PLA-chitosan and PLA- hydroxyapatite hybrid cell matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alaribe, F.N., Manoto, S.L., Motaung, S.C.K.M.: Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia. 71, 353–366 (2016)

    Article  Google Scholar 

  • Alves, N.M., Shi, J., Oramas, E., Santos, J.L., Tomas, H., Mano, J.F.: Bioinspired superhydrophobic poly(L-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. J. Biomed. Mater. Res. A. 91, 480–488 (2009)

    Article  Google Scholar 

  • Arca, H., Şenel, S.: Chitosan Based Systems for Tissue Engineering Part 1: Hard Tissues. Fabad J. Pharm. Sci. 33, 35–49 (2008)

    Google Scholar 

  • Bose, S., Roy, M., Bandyopadhyay, A.: Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30, 546–554 (2012)

    Article  Google Scholar 

  • Dahlan, K., Dewi, S., Nurlaila, A., Soejoko, D.: Synthesis and Characterization of Calcium Phosphate/Chitosan Composites. Int. J. Bas Appl. Sci. 12, 50–57 (2012)

    Google Scholar 

  • Daskalova, A., Angelova, L., Filipov, E., Aceti, D., Mincheva, R., Carrete, X., Kerdjoudj, H., Dubus, M., Chevrier, J., Trifonov, A., Buchvarov, I.: Biomimetic Hierarchical Structuring of PLA by Ultra-Short Laser Pulses for Processing of Tissue Engineered Matrices: Study of Cellular and Antibacterial Behavior. Polymers. 13, 2577 (2021)

    Article  Google Scholar 

  • Daskalova, A., Bliznakova, I., Angelova, L., Trifonov, A., Declercq, H., Buchvarov, I.: Femtosecond Laser Fabrication of Engineered Functional Surfaces Based on Biodegradable Polymer and Biopolymer/Ceramic Composite Thin Films. Polymers. 11, 378 (2019)

    Article  Google Scholar 

  • Derakhshanfar, S., Mbeleck, R., Xu, K., Zhang, X., Zhong, W., Xing, M.: 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mat. 3, 144–156 (2018)

    Google Scholar 

  • Govindarajan, T., Shandas, R.: A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polym. 6, 2309–2331 (2014)

    Article  Google Scholar 

  • Hutmacher, D.W., Schantz, J.T., Lam, C.X.F., Tan, K.C., Lim, T.C.: State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regener Med. 1, 245–260 (2007)

    Article  Google Scholar 

  • Hutmacher, D.W., Goh, J.C., Teoh, S.H.: An introduction to biodegradable materials for tissue engineering applications. Ann. Acad. Med. Singapore. 30, 183–191 (2001)

    Google Scholar 

  • Krüger, J., Kautek, W.: Ultrashort pulse laser interaction with dielectrics and polymers. Adv. Polym. Sci. 168, 247–289 (2004)

    Article  Google Scholar 

  • Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., Jardini, A.L., Filho, R.M.: Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 30, 321–328 (2012)

    Article  Google Scholar 

  • Lee, B., Jeon, H., Wang, A., Yan, Z., Yu, J., Grigoropoulos, C., Li, S.: Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater. 8, 2648–2658 (2012)

    Article  Google Scholar 

  • Li, H., Wen, F., Wong, Y.S., Boey, F.Y., Subbu, V.S., Leong, D.T., Ng, K.W., Ng, G.K., Tan, L.P.: Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells. Acta Biomater. 8, 531–539 (2012)

    Article  Google Scholar 

  • Logith Kumar, R., KeshavNarayan, A., Dhivya, S., Chawla, A., Saravanan, S., Selvamurugan, N.: A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 151, 172–188 (2016)

    Article  Google Scholar 

  • Lou, T., Wang, X., Song, G., Gu, Z., Yang, Z.: Fabrication of PLLA/βTCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Int. J. Biol. Macromol. 69, 464–470 (2014)

    Article  Google Scholar 

  • Martino, A.D., Sittinger, M., Risbud, M.V.: Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 26, 5983–5990 (2005)

    Article  Google Scholar 

  • Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M.C., Imani, R., Baheiraei, N., Farokhi, M., Fare, S.: Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 82, 130–140 (2018)

    Article  Google Scholar 

  • Milella, E., Cosentino, F., Licciulli, A., Massaro, C.: Preparation and characterization of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials. 22, 1425–1431 (2001)

    Article  Google Scholar 

  • Muzzarelli, R.A., Mattioli-Belmonte, M., Tietz, C., Biagini, R., Ferioli, G., Brunelli, M.A., et al.: Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials. 15, 1075–1081 (1994)

    Article  Google Scholar 

  • Muzzarelli, R.A.A.: Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr. Polym. 83, 1433–1445 (2011)

    Article  Google Scholar 

  • Narayan, R.J., Jin, C., Doraiswamy, A., Mihailescu, I.N., Jelinek, M., Ovsianikov, A., Chichkov, B., Chrisey, D.B.: Laser processing of advanced bioceramics. Adv. Eng. Mater. 9, 83–83 (2007)

    Article  Google Scholar 

  • O’Brien, C., Holmes, B., Faucettm, S., Zhang, L.G.: 3D printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng. B Rev. 21, 1–45 (2015)

    Google Scholar 

  • Olson, J., Atala, A., Yoo, J.: Tissue Engineering: Current Strategies and Future Directions. Chonn Med. J. 47, 1–13 (2011)

    Article  Google Scholar 

  • Rasal, R.M., Hirt, D.E.: Poly(lactic acid) toughening with a better balance of properties. Macromol. Mater. Eng. 295, 204–209 (2010)

    Article  Google Scholar 

  • Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)

    Article  Google Scholar 

  • Rocha, J.H.G., Lemos, A.F., Kannan, S., Agathopoulos, S., Ferreira, J.M.F.: Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Journals of Materials Chemistry. 15, 5007–5011 (2005)

    Article  Google Scholar 

  • Saito, T., Teraoka, K., Ota, K.:Arrayed three-dimensional structures designed to induce and maintain a cell pattern by a topographical effect on cell behavior: Mater. Sci. Eng. C. 49, 256–261 (2015)

  • Santoro, M., Shah, S.R., Walker, J.L., Mikos, A.G.: Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv Rev. 107, 206–212 (2016)

    Article  Google Scholar 

  • Scheinpflug, J., Pfeiffenberger, M., Damerau, A., Schwarz, F., Textor, M., Lang, A., Schulze, F.: Journey into Bone Models: A Review. Genes. 9, 247–283 (2018)

    Google Scholar 

  • Sears, N.A., Seshadri, D.R., Dhavalikar, P.S., Cosgriff-Hernandez, E.: A Review of three-dimensional printing in tissue engineering. Tissue Eng. B Rev. 22, 298–310 (2016)

    Article  Google Scholar 

  • Serra, T., Mateos-Timoneda, M.A., Planell, J.A., Navarro, M.: 3D printed PLA-based scaffolds. Organogenesis. 9, 239–244 (2013)

    Article  Google Scholar 

  • Suh, J.K., Matthew, H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 21, 2589–2598 (2000)

    Article  Google Scholar 

  • Stevens, B., Yang, Y.Z., Mohanda, S.A., Stucker, B., Nguyen, K.T.: A review of materials, fabrication to enhance bone regeneration in methods and strategies used engineered bone tissues. J. Biomed. Mater. Res. B. 85, 573–582 (2008)

    Article  Google Scholar 

  • Szmukler-Moncler, S., Perrin, D., Ahossi, V., Magnin, G., Bernard, J.P.: Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage. J. Biomed. Mater. Res. B Appl. Biomater. 68, 149–159 (2004)

    Article  Google Scholar 

  • Terakawa, M.: Femtosecond laser processing of biodegradable polymers. Appl. Sci. 8, 1123 (2018)

    Article  Google Scholar 

  • Yada, S., Terakawa, M.: Femtosecond laser induced periodic surface structure on poly-L-lactic acid. Opt. Express. 23, 5694–5703 (2015)

    Article  ADS  Google Scholar 

  • Varma, H.K., Babu, S.: Synthesis of Calcium Phosphate Bioceramics by Citrate Gel Pyrolysis Method. Ceram. Int. 31, 109–114 (2005)

    Article  Google Scholar 

  • Wang, D.X., He, Y., Bi, L., Qu, Z.H., Zou, J.W., Pan, Z., Fan, J.J., Chen, L., Dong, X., Liu, X.N., et al.: Enhancing the bioactivity of poly (lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int. J. Nanomed. 8, 1855–1865 (2013)

    Article  Google Scholar 

  • Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936)

    Article  Google Scholar 

  • Wua, S., Liu, X., Yeung, K., Liu, C., Yang, X.: Biomimetic porous scaffolds for bone tissue engineering. Mat. Sci. Eng. R. 80, 1–36 (2014)

    Article  ADS  Google Scholar 

  • Zhou, G., Liu, S., Ma, Y., Xu, W., Meng, W., Lin, X., Wang, W., Wang, S., Zhang, J.: Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. Int. J. Nanomed. 12, 7577–7588 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by BULGARIAN NATIONAL SCIENCE FUND (NSF) under grant number No. KP-06-H48/6 (2020–2023), „Development of hybrid functional micro/nanoporous biomaterial scaffolds by ultra-fast laser modification”; EUROPEAN UNION’S H2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 861138 and H2020 FET Open METAFAST Grant Agreement No. 899673.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Angelova.

Ethics declarations

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Photonics: Current Challenges and Emerging Applications, Guest edited by Jelena Radovanovic, Dragan Indjin, Maja Nesic, Nikola Vukovic and Milena Milosevic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelova, L., Daskalova, A., Filipov, E. et al. Analysis of femtosecond microstructured Poly Lactic Acid temporary cell scaffolds, spin-coated with Chitosan or Hydroxyapatite. Opt Quant Electron 54, 721 (2022). https://doi.org/10.1007/s11082-022-03970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03970-8

Keywords

Navigation