Skip to main content

Advertisement

Log in

Interaction between ordered multilayer structure and randomly distributed nanopillars in biopolymer increases the width of the photonic bandgap

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Structure having both ordered and disordered components, integrated into novel photonic structure have been presented. Self-supporting photonic structure is designed, as a combination of ordered multilayer grating and randomly distributed nanopillars. It is created through a combination of holographic method and non-solvent induced phase separation in biopolymer - pullulan, a polysaccharide-based material. Interplay between Bragg regularity and random scattering results in the 35% wide photonic band-gap and high reflectivity of up to 85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altug, H., Englund, D., Vučković, J.: Ultrafast photonic crystal nanocavity laser.Nat. Physics. 2, 484–488 (2006)

    Google Scholar 

  • Baba, T.: Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008)

    Article  ADS  Google Scholar 

  • Babinec, T., Choy, J., Smith, K., Khan, M., Lončar, M.: Design and focused ion beam fabrication of single crystal diamond nanobeam cavities. J. Vac Sci. Technol. B. 29, 01060–010606 (2011)

    Article  Google Scholar 

  • Bae, W.-G., Kim, H., Kim, D., Park, S.-H., Jeong, H., Suh, K.-Y.: Adv. Mater. 25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of Hierarchy. 26, 675–700 (2014)

    Google Scholar 

  • Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C.: Meseguer, F, Busch, K., Lolkes, S., Wehrspohn, R., Fol, H.: Photonic Crystals. Advance in Design, Fabrication and Characterization. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinhem, Germany (2003)

  • Cerdán, L., Costela, A., Enciso, E., García-Moreno, I.: Random Lasing in Self-Assembled Dye-Doped Latex Nanoparticles: Packing Density Effects. Adv. Funct. Mater. 23, 39161–33924 (2013)

    Article  Google Scholar 

  • Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Negative refraction by photonic crystals. Nature. 423, 604–605 (2003)

    Article  ADS  Google Scholar 

  • Deubel, M., von Freymann, G., Wegener, M., Pereira, S., Busch, K., Soukoulis, C.: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004)

    Article  ADS  Google Scholar 

  • Edrington, A., Urbas, A., DeRege, P., Chen, C., Swager, T., Hadjichristidis, N., Xenidou, M., Fetters, L., Joannopoulos, J., Fink, Y., Thomas, E.: Adv. Mater. 13, 421–425 (2001)

    Article  Google Scholar 

  • Galisteo-López, J., Ibisate, M., Sapienza, R., Froufe-Pérez, L., Blanco, A., López, C.: Self-Assembled Photonic Structures. Adv. Mater. 23, 30–69 (2011)

    Article  ADS  Google Scholar 

  • García, P., Sapienza, R., Blanco, A., López, C.: Photonic Glass: A Novel Random Material for Light. Adv. Mater. 19, 2597 (2007)

    Article  Google Scholar 

  • Harb, A., Torres, F., Ohlinger, K., Lin, Y., Lozano, K., Xu, D., Chen, K.: Holographically formed three-dimensional Penrose-type photonic quasicrystal through a lab-made single diffractive optical element. Opt. Express. 18, 20512–20517 (2010)

    Article  ADS  Google Scholar 

  • Joannopoulos, J., Johnson, S., Winn, J., Meade, R.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton, NJ (2008)

    MATH  Google Scholar 

  • Kinoshita, S., Yoshioka, K., Kawagoe, K.: Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B 269, 1417 – 1321 (2002)

  • Lee, J.-H., Koh, C., Singer, J., Jeon, S.-J., Maldovan, M., Stein, O., Thomas, E.: 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons. Adv. Mater. 26, 532–569 (2014)

    Article  Google Scholar 

  • Li, X., Han, Y.: Tunable wavelength antireflective film by non-solvent-induced phase separation of amphiphilic block copolymer micelle solution. J. Mater. Chem. 21, 18024–18033 (2011)

    Article  Google Scholar 

  • Liu, K., Xu, H., Hu, H., Gan, Q., Cartwright, A.: One-Step Fabrication of Graded Rainbow-Colored Holographic Photopolymer Reflection Gratings. Adv. Mater. 24, 1604–1609 (2012)

    Article  Google Scholar 

  • Lončar, M., Nedeljković, D., Doll, T., Vučković, J., Scherer, A., Pearsall, T.: Waveguiding in planar photonic crystals. Appl. Phys. Lett. 77, 1937–1939 (2000)

    Article  ADS  Google Scholar 

  • Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., van Driel, N.M.: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature. 405, 437–440 (2000)

    Article  ADS  Google Scholar 

  • Pantelić, D., Savić, S., Jakovljević, D.: Dichromated pullulan as a novel photosensitive holographic material. Opt. Lett. 23, 807–809 (1998)

    Article  ADS  Google Scholar 

  • Prajapati, V., Jani, G., Khanda, S.: Pullulan: An exopolysaccharide and its various applications. Carbohydr. Polym. 95, 540–549 (2013)

    Article  Google Scholar 

  • Ren, Z., Zhai, T., Wang, Z., Zhou, J., Liu, D.: Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material. Adv. Mater. 20, 2337–2340 (2008)

    Article  Google Scholar 

  • Savić, S., Pantelić, D., Jakovljević, D.: Real-time and postprocessing holographic effects in dichromated pullulan. Appl. Opt. 41, 4484–4488 (2002)

    Article  ADS  Google Scholar 

  • Savić-Šević, S., Pantelić, D.: Relief hologram replication using a dental composite as an embossing tool. Opt. Express. 13, 2747–2754 (2005)

    Article  ADS  Google Scholar 

  • Savić-Šević, S., Pantelić, D.: Dichromated pullulan diffraction gratings: influence of environmental conditions and storage time on their properties. Appl Opt. 46, 287–291 (2007)

    Article  ADS  Google Scholar 

  • Savić-Šević, S., Pantelić, D., Murić, B., Grujić, D., Vasiljević, D., Kolaric, B., Jelenković, B.: Thermo-osmotic metamaterials with large negative thermal expansion. J. Mater. Chem. C. 9, 8163–8168 (2021)

    Article  Google Scholar 

  • Savić-Šević, S., Pantelić, Grujić, D., Jelenković, B.: Localization of light in a polysaccharide-based complex nanostructure. Opt. Quant. Electron. 48–289 (2016)

  • Segev, M., Silberberg, Y., Christodoulides, D.: Anderson localization of light. Nat. Photon. 7, 197–204 (2013)

    Article  ADS  Google Scholar 

  • Soljacic, M., Joannopoulos, J.: Enhancement of nonlinear effects using photonic crystals. Nat. mater. 3, 211–219 (2004)

    Article  ADS  Google Scholar 

  • Tondiglia, V., Natarajan, L., Sutherland, R., Tomlin, D., Bunning, T.: Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals. Adv. Mater. 14, 187–191 (2002)

    Article  Google Scholar 

  • Trout, T., Schmieg, J., Gambogi, W., Weber, A.:Optical Photopolymers: Design and Applications: Adv. Mater. 10, 1219–1224 (1998)

  • Valy Vardeny, Z., Nahata, A., Agrawal, A.: Optics of photonic quasicrystals. Nat. Photon. 7, 177–187 (2013)

    Article  ADS  Google Scholar 

  • Van Albada, M.P., Lagendijk, A.: Observation of Weak Localization of Light in a Random Medium. Phys. Rev. Lett. 55, 2692–2695 (1985)

    Article  ADS  Google Scholar 

  • Wiersma, D., Bartolini, P., Lagendijk, A., Righini, R.: Localization of light in a disordered medium. Nature. 390, 671–673 (1997)

    Article  ADS  Google Scholar 

  • Wiersma, D.: The physics and applications of random lasers. Nat Phys. 4, 359–367 (2008)

    Article  Google Scholar 

  • Wiersma, D.: Nat. Photon. Disordered photonics. 7, 188–196 (2013)

    ADS  Google Scholar 

  • Wolf, P.-E., Maret, G.: Weak Localization and Coherent Backscattering of Photons in Disordered Media. Phys. Rev. Lett. 55, 2696–2699 (1985)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by funding provided by the Institute of Physics Belgrade, through the grant by the Ministry of Education, Science, and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Savić-Šević.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Photonics: Current Challenges and Emerging Applications, Guest edited by Jelena Radovanovic, Dragan Indjin, Maja Nesic, Nikola Vukovic and Milena Milosevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savić-Šević, S., Jelenković, B. Interaction between ordered multilayer structure and randomly distributed nanopillars in biopolymer increases the width of the photonic bandgap. Opt Quant Electron 54, 622 (2022). https://doi.org/10.1007/s11082-022-03958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03958-4

Keywords

Navigation