Skip to main content
Log in

Design of an all-optical half adder based on photonic crystal ring resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a half adder was designed based on two-dimensional photonic crystals with small dimensions and a simple structure. Half adders are an important component of logic circuits, thus, designing a high-performance half adder can improve the function of computational circuits. In addition to the dimensions and simplicity of the structure, speed and accuracy were also considered in the design of this half adder. The respective proximity of the state outputs 0 and 1 of this circuit to zero exponentiation and the maximum exponentiation value has led to a significant distance between the two values of reasonable 0 and 1. cylindrical dielectric rods were employed in the air field. This half adder was designed to be utilized in the widely-used telecommunication frequency of 1550 nm. All computations are performed for TM mode and through using the finite difference methods in the domain of time (FDTD). The designed structure size was \(80.28 {\mathrm{\mu m}}^{2}\), which is suitable for optical integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdollahi, M., Parandin, F.: A novel structure for realization of an all-optical, one-bit half-adder based on 2D photonic crystals. J. Comput. Electron 18, 1416–1422 (2019)

    Google Scholar 

  • Chen, X., Wang, D., Wang, T., Yang, Z., Zou, X., Wang, P., Luo, W., Li, Q., Liao, L., Hu, W., Wei, Z.: Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces 11(36), 33188–33193 (2019)

    Google Scholar 

  • Fan, S., Wang, Y., Cao, S., Zhao, B., Sun, T., Liu, P.: A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels. Energy 239(Part D), 122302 (2022)

    Google Scholar 

  • Fan, S., Yanik, M.F., Wang, Z., Sandhu, S., Povinelli, M.L.: Advances in theory of photonic crystals. J. Lightwave Technol. 24(12) (2006)

  • Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B 36, 401–407 (2019)

    ADS  Google Scholar 

  • Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)

    ADS  Google Scholar 

  • Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)

    ADS  Google Scholar 

  • Farmani, A., Mir, A., Irannejad, M.: 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. J. Opt. Soc. Am. B 36(4), 811–818 (2019)

    ADS  Google Scholar 

  • Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quant. Electron. 45, 1027–1036 (2013)

    Google Scholar 

  • Gilarlue, M.M., Hadi Badri, S.: Photonic crystal waveguide crossing based on transformation optics. Opt. Commun. 450, 308–315 (2019)

    ADS  Google Scholar 

  • Gupta, M.M., Medhekar, S.: All-optical NOT and AND gates using counter propagating beams innonlinear Mach-Zehnder interferometer made of photonic crystal waveguides. Optik 127, 1221–1228 (2016)

    ADS  Google Scholar 

  • He, J., Xu, P., Zhou, R., Li, H., Zu, H., Zhang, J., Qin, Y., Liu, X., Wang, F.: Combustion synthesized electrospun InZnO nanowires for ultraviolet photodetectors. Adv. Electron. Mater. (2021). https://doi.org/10.1002/aelm.202100997

    Article  Google Scholar 

  • Hookari, M., Roshani, S., Roshani, S.: Design of a low pass filter using rhombus-shaped resonators with an analytical LC equivalent circuit. Turk. J. Electr. Eng. Comput. Sci. 28(2), 865–874 (2020a)

    Google Scholar 

  • Hookari, M., Roshani, S., Roshani, S.: High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler. Int. J. RF Microwave Comput. Aided Eng. 30(8), e22252 (2020b)

    Google Scholar 

  • Jamshidi, M., Siahkamari, H., Roshani, S., Roshani, S.: A compact Gysel power divider design using U-shaped and T-shaped resonators with harmonics suppression. Electromagnetics 39(7), 491–504 (2019)

    Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    ADS  Google Scholar 

  • Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photon. Netw. Commun. 33, 159–165 (2017)

    Google Scholar 

  • Lotfi, S., Roshani, S., Roshani, S., Gilan, M.S.: Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs. Frequenz 74(5–6), 169–176 (2020)

    ADS  Google Scholar 

  • Miri, M., Sodagar, M., Mehrany, K., Eftekhar, A.A., Adibi, A., Rashidian, B.: Design and fabrication of photonic crystal nano-beam resonator: transmission line model. J. Lightwave Technol. 32(1), 91–98 (2013)

    ADS  Google Scholar 

  • Mohebzadeh-Bahabady, A., Olyaee, S.: All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect. IET Optoelectron. 12(4), 191–195 (2018)

    Google Scholar 

  • Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63(8), 735–741 (2015)

    ADS  Google Scholar 

  • Naghizade, S., Saghaei, H.: A novel design of all-optical 4 to 2 encoder with multiple defects in silica-based photonic crystal fiber. Optik 222, 165419 (2020)

    ADS  Google Scholar 

  • Naghizade, S., Mohammadi, S., Khoshsima, H.: Design and simulation of an all optical 8 to 3 binary encoder based on optimized photonic crystal OR gates. J. Opt. Commun. (2018). https://doi.org/10.1515/joc-2018-0034

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: A novel design of all-optical half adder using a linear defect in a square lattice rod-based photonic crystal microstructure. arXiv preprint arXiv:2002.04535 (2020)

  • Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photon. Netw. Commun. 35(2), 245–250 (2018)

    Google Scholar 

  • Olyaee, S.: Ultra-fast and compact all-optical encoder based on photonic crystal nano-resonator without using nonlinear materials. Phot. Lett. Pol. 11(1), 10–12 (2019)

    Google Scholar 

  • Olyaee, S., Najafgholinezhad, S.: A high quality factor and wide measurement range biosensor based on photonic crystal nanocavity resonator. Sens. Lett. 11(3), 483–488 (2013b)

    Google Scholar 

  • Olyaee, S., Najafgholinezhad, S., Alipour-Banaei, H.: Four-channel label-free photonic crystal biosensor using nanocavity resonators. Photon. Sensors 3(3), 231–236 (2013a)

    ADS  Google Scholar 

  • Olyaee, S., Seifouri, M., Mohebzadeh-Bahabady, A., Sardari, M.: Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size. Opt. Quant. Electron. 50, 385 (2018)

    Google Scholar 

  • Parandin, F.: High contrast ratio all-optical 4 × 2 encoder based on two-dimensional photonic crystals. Opt. Laser Technol. 113, 447–452 (2019)

    ADS  Google Scholar 

  • Parandin, F.: Ultra-compact terahertz all-optical logic comparator on GaAs photonic crystal platform. Opt. Laser Technol. 144, 107399 (2021)

    Google Scholar 

  • Parandin, F., Mahtabi, N.: Design of an ultra-compact and high-contrast ratio all-optical NOR gate. Opt. Quant. Electron. 53, 666 (2021)

    Google Scholar 

  • Parandin, F., Moayed, M.: Designing and simulation of 3-input majority gate based on two-dimensional photonic crystals. Optik 216, 164930 (2020)

    ADS  Google Scholar 

  • Parandin, F., Sheykhian, A.: Design and simulation of a 2 × 1 All-Optical multiplexer based on photonic crystals. Opt. Laser Technol. 151, 108021 (2022a)

    Google Scholar 

  • Parandin, F., Sheykhian, A.: Designing a circuit for high-speed optical logic half subtractor. Int. J. Circuits Syst. Signal Process. 16, 887–891 (2022b)

    Google Scholar 

  • Parandin, F., Kamarian, R., Jomour, M.: Optical 1-bit comparator based on two-dimensional photonic crystals. Appl. Opt. 60, 2275–2280 (2021a)

    ADS  Google Scholar 

  • Parandin, F., Heidari, F., Rahimi, Z., Olyaee, S.: Two-dimensional photonic crystal biosensors: a review. Opt. Laser Technol. 144, 107397 (2021b)

    Google Scholar 

  • Parandin, F., Kamarian, R., Jomour, M.: A novel design of all optical half-subtractor using a square lattice photonic crystals. Opt. Quant. Electron. 53, 114 (2021c)

    Google Scholar 

  • Pirzadi, M., Mir, A., Bodaghi, D.: Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate. IEEE Photo. Technol. Lett. 28(21) (2016)

  • Roshani, S., Roshani, S.: Design of a high efficiency class-F power amplifier with large signal and small signal measurements. Measurement 149, 106991 (2020)

    Google Scholar 

  • Roshani, S., Jamshidi, M.B., Mohebi, F., Roshani, S.: Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wirel. Pers. Commun. 117(3), 2085–2096 (2020)

    Google Scholar 

  • Roshani, S., Azizian, J., Roshani, S., et al.: Design of a miniaturized branch line microstrip coupler with a simple structure using artificial neural network. Frequenz (2022). https://doi.org/10.1515/freq-2021-0172

    Article  Google Scholar 

  • Saghaei, H., Zahedi, A., Karimzadeh, R., Parandin, F.: Line defects on photonic crystals for the design of all-optical power splitters and digital logic gates. Superlattices Microstruct 110, 133–138 (2017)

    ADS  Google Scholar 

  • Sani, M.H., Tabrizi, A.A., Saghaei, H., et al.: An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure. Opt. Quant. Electron. 52, 107 (2020)

    Google Scholar 

  • Vahdati, A., Parandin, F.: Antenna patch design using a photonic crystal substrate at a frequency of 1.6 THz. Wirel. Personal Commun. 109, 2213–2219 (2019)

    Google Scholar 

  • Yang, Y., Wang, Y., Zheng, C., Lin, H., Xu, R., Zhu, H., Bao, L., Xu, X.: Lanthanum carbonate grafted ZSM-5 for superior phosphate uptake: investigation of the growth and adsorption mechanism. Chem. Eng. J. 430(4), 133166 (2022)

    Google Scholar 

  • Yari, P., Farmani, H., Farmani, A.: Steering of guided light with graphene metasurface for refractive index sensing with high figure of merits. Plasmonics 124, 114375 (2020)

    Google Scholar 

  • Ye, Y., Jiao, B., Kong, Y., Liu, R., Du, X., Jia, K., Yun, S., Chen, D.: Experimental investigations on the thermal superposition effect of multiple hotspots for embedded microfluidic cooling. Appl. Therm. Eng. 202, 117849 (2022)

    Google Scholar 

  • Zahedi, A., Parandin, F., Karkhanehchi, M.M., Habibi-Shams, H., Rajamand, S.: Design and simulation of optical 4-channel demultiplexer using photonic crystals. J. Opt. Commun. 40(1), 17–20 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Kermanshah Branch, Islamic Azad University for the support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Parandin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parandin, F., Sheykhian, A. Design of an all-optical half adder based on photonic crystal ring resonator. Opt Quant Electron 54, 443 (2022). https://doi.org/10.1007/s11082-022-03810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03810-9

Keywords

Navigation