Skip to main content
Log in

Electronic characterization of plasma-thick n-type silicon using neural networks and photoacoustic response

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, electronic semiconductor characterization using reverse-back procedure was applied to different photoacoustic responses aiming to find effective ambipolar diffusion coefficient and a bulk lifetime of the minority carriers. The main idea was to find the small fluctuations in investigated parameters due to detecting possible unwanted sample contaminations and temperature variations during the measurements. The mentioned procedure was based on the application of neural networks. Knowing that in experiments the contaminated surfaces of the sample can play a significant role in the global recombination process that we are measuring and that the unintentionally introduced defects of the sample crystal lattice could vary the carrier lifetime by several orders of magnitude, a method of PA signal adjustment by the reverse-back procedure is developed, based on the changes of the carrier electronic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alamo, J.A.D., Swanson, R.M.: Measurement of steady-state minority-carrier transport parameters in heavily doped n-type silicon. IEEE Trans. Electron Dev. 34, 1580–1589 (1987). https://doi.org/10.1109/T-ED.1987.23122

    Article  ADS  Google Scholar 

  • Albu, A., Precup, R.E., Teban, T.E.: Results and challenges of artificial neural networks used for decision-making and control in medical applications. Facta Univ. Series: Mech. Eng. 17(3), 285–308 (2019)

    Google Scholar 

  • Aleksić, S.M., Markushev, D.K., Pantić, D.S., Rabasović, M.D., Markushev, D.D., Todorović, D.M.: Electro-Acoustic influence of the measuring system on the photoacoustic signal amplitude and phase in frequency domain. Facta Univ. Series Phys. Chem. Technol. 14(1), 9–20 (2016). https://doi.org/10.2298/FUPCT1601009A

    Article  Google Scholar 

  • Cuevas, A., Daniel, M.D.: Measuring and interpreting the lifetime of silicon wafers. Sol. Energy 76(1–3) 255–262 (2003). https://doi.org/10.1016/j.solener.2003.07.033

    Article  Google Scholar 

  • Ćojbašić, Z., Nikolić, V., Ćirić, I., Lj, Ć: Computationally intelligent modelling and control of fluidized bed combustion process. Therm. Sci. 15(2) 321–338 (2011). https://doi.org/10.2298/TSCI101205031C

    Article  Google Scholar 

  • Djordjevic, K.Lj., Markushev, D.D., Ćojbašić, ŽM., Galović, S.P.: Photoacoustic measurements of the thermal and elastic properties of n-type silicon using neural networks. SILICON 12 1289–1300 (2020a). https://doi.org/10.1007/s12633-019-00213-6

    Article  Google Scholar 

  • Djordjevic, K.Lj., Markushev, D.D., Ćojbašić, ŽM., Galović, S.P.: Inverse problem solving in semiconductor photoacoustics by neural networks. Inverse Probl. Sci. Eng. 29(2) 248–262 (2020b). https://doi.org/10.1080/17415977.2020.1787405

    Article  MathSciNet  MATH  Google Scholar 

  • Djordjevic, K.Lj, Galovic, S.P., Jordovic-Pavlovic, M.I., Nesic, M.V., Popovic, M.N., Ćojbašić, ŽM., Markushev, D.D.: Photoacoustic optical semiconductor characterization based on machine learning and reverse-back procedure. Opt. Quant. Electron. 52(5) 247 1–9 (2020c). https://doi.org/10.1007/s11082-020-02373-x

    Article  Google Scholar 

  • Dramićanin, M.D., Nikolić, P.M., Ristovski, Z.D., Vasiljević, D.G., Todorović, D.M.: Photoacoustic investigation of transport in semiconductors: theoretical and experimental study of a Ge single crystal. Phys. Rev. B 51, 14 226–233 (1995). https://doi.org/10.1103/PhysRevB.51.14226

    Article  ADS  Google Scholar 

  • Fournier, D., Boccara, C., Skumanich, A., Amer, N.M.: Photothermal investigation of transport in semiconductors: theory and experiment. J. Appl. Phys. 59(3) 787–795 (1986). https://doi.org/10.1063/1.336599

    Article  ADS  Google Scholar 

  • Glorieux, G., Fivez, J., Thoen, J.: Photoacoustic investigation of the thermal properties of layered materials: calculation of the forward signal and numerical inversion procedure. J. Appl. Phys. 73, 684–690 (1993). https://doi.org/10.1063/1.353352

    Article  ADS  Google Scholar 

  • Lukić, M., Čojbašić, Ž, Rabasović, M.D., Markushev, D.D., Todorović, D.M.: Neural networks-based real-time determination of laser beam spatial profile and vibrational-to-translational relaxation time within pulsed photoacoustics. Int. J. Thermophys. 34(8–9), 1795–1802 (2013). https://doi.org/10.1007/s10765-013-1507-y

    Article  ADS  Google Scholar 

  • Lukić, M., Čojbašić, Ž, Rabasović, M.D., Markushev, D.D.: Computationally intelligent pulsed photoacoustics. Measur. Sci. Technol. 25(12), 125203–125209 (2014). https://doi.org/10.1088/0957-0233/25/12/125203

    Article  ADS  Google Scholar 

  • Mandelis, A., Hess, P. (eds.): Semiconductors and Electronic Materials, Vol. IV in the series: progress in photothermal and photoacoustic science and technology (SPIE Press, Bellingham, 2000) Available form: ISBN: 9780819435064

  • Markushev, D.D., Rabasović, M.D., Todorović, D.M., Galović, S., Bialkowski, S.E.: Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain. Rev. Sci. Instrum. 86(3) 035110 1–9 (2015). https://doi.org/10.1063/1.4914894

    Article  ADS  Google Scholar 

  • Markushev, D.K., Markushev, D.D., Galović, S., Aleksić, S., Pantić, D.S., Todorović, D.M.: The surface recombination velocity and bulk lifetime influences on photogenerated excess carrier density and temperature distributions in n-type silicon excited by a frequency-modulated light source. Facta Univ. Electron. Energ. 31(2), 313–328 (2018). https://doi.org/10.2298/FUEE1802313M

    Article  Google Scholar 

  • Markushev, D.K., Markushev, D.D., Aleksic, S.M., Pantic, D.S., Galovic, S.P., Todorovic, D.M., Ordonez-Miranda, J.: Effects of the photogenerated excess carriers on the thermal and elastic properties of n-type silicon excited with a modulated light source: theoretical analysis. J. Appl. Phys. 126(8) 185102 1–12 (2019). https://doi.org/10.1063/1.5100837

    Article  ADS  Google Scholar 

  • Melnikov, A., Mandelis, A., Soral, A., Zavala-Lugo, C., Pawlak, M.: Quantitative imaging of defect distributions in CdZnTe wafers using combined deep-level photothermal spectroscopy, photocarrier radiometry, and lock-in carrierography. ACS Appl. Electron. Mater. 3, 2551–2563 (2021). https://doi.org/10.1021/acsaelm.1c00100

    Article  Google Scholar 

  • Neamen, D. A.: Semiconductor physics and devices (McGraw–Hill, Boston, 2002)

  • Neto, A.P., Vargas, H., Leite, N.F., Miranda, L.C.M.: Photoacoustic investigation of semiconductors: influence of carrier diffusion and recombination in PbTe and Si. Phys. Rev. B Condens. Matter 40(6), 3924–3930 (1989). https://doi.org/10.1103/physrevb.40.3924

    Article  ADS  Google Scholar 

  • Palais, O., Gervais, J., Clerc, L., Martinuzzi, S.: High resolution lifetime scan maps of silicon wafers. Mater. Sci. Eng. B 71(1–3), 47–50 (2000). https://doi.org/10.1016/S0921-5107(99)00347-5

    Article  Google Scholar 

  • Popovic, M. N., Furundzic, D., Galovic, S. P.: Photothermal depth profiling of optical gradient materials by neural network, Publications of the Astronomical Observatory of Belgrade, 89 147–150 (2010)

  • Rabasović, M.D., Nikolić, M.G., Dramićanin, M.D., Franko, M., Markushev, D.D.: Low-cost, portable photoacoustic setup for solid state. Measur. Sci. Technol. 20(9) 1−6 (2009). https://doi.org/10.1088/0957-0233/20/9/095902

    Article  Google Scholar 

  • Sablikov, V.A., Sandomirskii, V.B.: The photoacoustic effect in semiconductors. Phys. Status Solidi (b) 120(2) 471–480 (1983). https://doi.org/10.1002/pssb.2221200203

    Article  ADS  Google Scholar 

  • Stearns, R. G., Kino, G. S.: Photoacoustic techniques for the measurement of electronic properties of semiconductors, Chap.9 in Photoacoustic and thermal wave phenomena in semiconductors, A. Mandelis Ed., Elsivier Sci.Pub.Co., North-Holland, N.York, p.201, (1987)

  • Todorovic, D.M., Nikolic, P.M., Dramicanin, M.D., Vasiljevic, D.G., Ristovski, Z.D.: Photoacoustic frequency heat transmission technique: thermal and carrier transport parameters measurements in silicon. J. Appl. Phys. 78(9) 5750–5755 (1995). https://doi.org/10.1063/1.359637

    Article  ADS  Google Scholar 

  • Todorović, D.M., Rabasović, M.D., Markushev, D.D., Sarajlic, M.: Photoacoustic elastic bending in thin film-substrate system: experimental determination of the thin film parameters. J. Appl. Phys. 116(6) 053506 1–9 (2014). https://doi.org/10.1063/1.4890346

    Article  ADS  Google Scholar 

  • Tyagi, M.S., Van Overstraeten, R.: Minority carrier recombination in heavily-doped silicon. Solid-State Electron 26(6) 577–597 (1983). https://doi.org/10.1016/0038-1101(83)90174-0

    Article  ADS  Google Scholar 

  • Wang, S.: Fundamentals of semiconductr theory and device physics, Prentice-Hall International Editions, NJ USA 1989 Available form: ISBN 0–13–344425–2

  • Yu, T.O., Gurevich, Y.G.: Temperature gradient and transport of heat and charge in a semiconductor structure. Low Temp. Phys./fizika Nizkih Temp. 47(7), 596–601 (2021). https://doi.org/10.1063/10.0005182

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for the financial support of this research by the Ministry of Education, Science and Technology development of the Republic of Serbia, contract number 451-03-9/2021-14/200017.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to К. Lj Djordjević.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Photonics: Current Challenges and Emerging Applications.

Guest edited by Jelena Radovanovic, Dragan Indjin, Maja Nesic, Nikola Vukovic and Milena Milosevic.

Appendices

Appendix 1: Photogenerated density calculation

The Solution of the Eq. (5) can be found in the form (Markushev et al. 2018; 2019):

$$\delta \,n_{p} \left( {x,f} \right) = A_{ + } e^{{x{\kern 1pt} L^{{ - {\kern 1pt} 1}} }} + A_{ - } e^{{ - \,x{\kern 1pt} L^{{ - {\kern 1pt} 1}} }} + A_{\beta } e^{ - \beta \,x} ,$$
(15)

The \(A_{\beta }\) is the solution of the inhomogeneous part of the differential equation, and \(A_{ + }\) and \(A_{ - }\) are the integration constants which are given in the form:

$$A_{ \pm } = \pm \frac{{A_{\beta } }}{{A_{L} }}\left[ {\left( {1 \mp \sigma_{1} } \right)\,\left( {1 + \beta {\kern 1pt} L\sigma {}_{2}} \right)e^{{ - \beta {\kern 1pt} l}} - \left( {1 \pm \sigma_{2} } \right)\left( {1 + \beta {\kern 1pt} L\sigma_{1} } \right)e^{{ \pm lL^{ - 1} }} } \right]$$
(16)
$$A_{L} = \left( {1 + \sigma_{1} } \right)\left( {1 + \sigma_{2} } \right)e^{{lL^{ - 1} }} - \left( {1 - \sigma_{1} } \right)\left( {1 - \sigma_{2} } \right)e^{{ - lL^{ - 1} }}$$
(17)
$$A_{\beta } = \frac{{I_{0} }}{{\varepsilon v_{D} }}\frac{\beta L}{{L^{ - 2} - \beta^{2} }}$$
(18)

calculated using the boundary conditions.

$$\left. {D_{p} \frac{{{\text{d}}\delta n_{p} \left( x \right)}}{{{\text{d}}x}}} \right|_{x = 0} = s_{1} \delta n_{p} \left( 0 \right)\;{\text{and}}\;\left. {D_{p} \frac{{{\text{d}}\delta n_{p} \left( x \right)}}{{{\text{d}}x}}} \right|_{x = l} = - s_{2} \delta n_{p} \left( l \right)$$
(19)

where \(\sigma_{i} = D_{p} \left( {s_{m} L} \right)^{ - 1}\) is the dimensionless parameter which depends on the surface recombination speed sm at front (m = 1) and back side (m = 2) surfaces of the sample, and \(v_{D} = D{}_{p}L^{{ - {\kern 1pt} 1}}\) is the diffusion velocity of the photogenerated minority carriers.

Appendix 2: Temperature calculation

The solution of the Eq. (6) can be written as (Markushev et al. 2018; 2019):

$$T_{s} \left( {x,f} \right) = b_{1} e^{{\sigma_{i} x}} + b_{2} e^{{ - \sigma_{i} x}} + b_{3} \delta n_{p} \left( {x,f} \right) + b_{4} e^{ - \beta x} ,$$
(20)

where

$$\begin{gathered} b_{1} = \frac{{\coth \left( {\sigma_{i} l} \right) - 1}}{{2k\sigma_{i} }}\left[ {b_{3} k\left( {\frac{{{\text{d}}\delta n_{p} \left( x \right)}}{{{\text{d}}x}}} \right)_{x = 0} - e^{{ - \sigma_{i} l}} \left( {\frac{{{\text{d}}\delta n_{p} \left( x \right)}}{{{\text{d}}x}}} \right)_{x = l} } \right] + \hfill \\ \, + \varepsilon_{g} \left[ {\delta n_{p} \left( 0 \right)s_{1} + \delta n_{p} \left( l \right)s_{2} e^{{\sigma_{i} l}} } \right] + b_{4} k\beta \left[ {e^{{l\left( {\sigma_{i} - \beta } \right)}} - 1} \right] \hfill \\ \end{gathered}$$
(21)
$$\begin{gathered} b_{2} = \frac{1}{{{2}k\sigma_{i} {\text{sinh}}\left( {\sigma_{i} l} \right)}}\left\{ { - b_{3} k\left( {\frac{{{\text{d}}\delta n_{p} \left( x \right)}}{{{\text{d}}x}}} \right)_{x = l} + {\upvarepsilon }_{g} \delta n_{p} \left( l \right)s_{2} + b_{4} k\beta \, e^{ - \beta l} + } \right. \hfill \\ \, \left. { + e^{{ - \sigma_{i} l}} \left[ {b_{3} k\left( {\frac{{{\text{d}}\delta n_{p} \left( x \right)}}{{{\text{d}}x}}} \right)_{x = 0} + {\upvarepsilon }_{g} \delta n_{p} \left( 0 \right)s_{1} - b_{4} k\beta } \right]} \right\} \hfill \\ \end{gathered}$$
(22)
$$b_{3} = \frac{{\varepsilon_{g} }}{{k\tau_{p} \left( {\sigma_{i}^{2} - L^{ - 2} } \right)}}\;{\text{and}}\;b_{4} = \frac{{\beta I_{0} }}{{\varepsilon \left( {\beta^{2} - \sigma_{i}^{2} } \right)}}\left( {\frac{{b_{3} }}{{D_{p} }} - \frac{{\varepsilon - \varepsilon_{g} }}{k}} \right)$$
(23)

are constants calculated using the boundary conditions !!!!!

$$\left. { - k\frac{{{\text{d}}T_{s} \left( x \right)}}{{{\text{d}}x}}} \right|_{x = 0} = s_{1} \delta n_{p} \left( 0 \right)\varepsilon_{g} \;{\text{and}}\;\left. { - k\frac{{{\text{d}}T_{s} \left( x \right)}}{{{\text{d}}x}}} \right|_{x = l} = - s_{2} \delta n_{p} \left( l \right)\varepsilon_{g}$$
(24)

Here s1 and s2 are the surface recombination speeds at illuminated front (1) and nonilluminated back (2) sample surface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lj Djordjević, К., Galović, S.P., Ćojbašić, Ž.M. et al. Electronic characterization of plasma-thick n-type silicon using neural networks and photoacoustic response. Opt Quant Electron 54, 485 (2022). https://doi.org/10.1007/s11082-022-03808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03808-3

Keywords

Navigation