Skip to main content
Log in

On soliton solutions for perturbed Fokas–Lenells equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, a variety of optical soliton solutions are derived for a nonlinear generalized equation with variable coefficients. At first, a computational approach is used to obtain solutions for the proposed model for a particular case. After, a generalized approach is considered to obtain other type of solutions given in a more general form. From the model considered here, the classical perturbed Fokas-Lenells equation is obtained and new optical soliton solutions for this last case are presented. Finally, some conclusions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akinyemi, L.: Two improved techniques for the perturbed nonlinear Biswas-Milovic equation and its optical solitons. Optik 243, 167477 (2021)

    Article  ADS  Google Scholar 

  • Akinyemi, L., Senol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Senol, M., Mirzazadeh, M., Eslami, M.: Optical solitons for weakly nonlocal Schrödinger equation with parabolic law nonlinearity and external potential. Optik 230, 166281 (2021)

    Article  ADS  Google Scholar 

  • Al-Ghafri, K.S., Krishnan, E.V., Biswas, A.: Chirped optical soliton perturbation of Fokas-Lenells equation with full nonlinearity. Adv. Differ. Equ. 2020(1), 1–12 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Bansal, A., Kara, A.H., Biswas, A., Moshokoa, S.P., Belic, M.: Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas-Lenells equation. Chaos Solitons Fractals 114, 275–280 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Alshomrani, A.S., Zhou, Q., Moshokoa, S.P., Belic, M.: Chirped optical solitons of Chen-Lee-Liu equation by extended trial equation scheme. Optik 156, 999–1006 (2018)

    Article  ADS  Google Scholar 

  • Chen, Y.Q., Tang, Y.H., Manafian, J., Rezazadeh, H., Osman, M.S.: Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model. Nonlinear Dyn. 105, 2539–2548 (2021)

    Article  Google Scholar 

  • Dhiman, S.K., Kumar, S., Kharbanda, H.: An extended (3+ 1)-dimensional Jimbo-Miwa equation: Symmetry reductions, invariant solutions and dynamics of different solitary waves. Modern Phys. Lett. B 35(34), 2150528 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghanbari, B.: Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative. Math. Methods Appl. Sci. 44(11), 8759–8774 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B.: On novel nondifferentiable exact solutions to local fractional Gardner’s equation using an effective technique. Math. Methods Appl. Sci. 44(6), 4673–4685 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Nisar, K.S., Aldhaifallah, M.: Abundant solitary wave solutions to an extended nonlinear Schrödingers equation with conformable derivative using an efficient integration method. Adv. Differ. Equ. 2020(1), 1–25 (2020)

    Article  MATH  Google Scholar 

  • Gomez, C.A., Jhangeer, A., Rezazadeh, H., Talarposhti, R., Bekir, A.: Closed form solutions of the perturbed Gerdjikov-Ivanov equation with variable coefficients. East Asian J. Appl. Math. 11(1), 207–218 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez, S., Cesar, A.: Exact solutions for a generalized Higgs equation. J. King Saud Univ.-Sci. 32(1), 48–53 (2020)

    Article  Google Scholar 

  • Gómez, S.C.A., Salas, A.H.: The Cole-Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6). Appl. Math. Comput. 204(2), 957–962 (2008)

    MathSciNet  MATH  Google Scholar 

  • Hafez, M.G., Alam, M.N., Akbar, M.A.: Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud Univ.-Sci. 27(2), 105–112 (2015)

    Article  Google Scholar 

  • Hajiseyedazizi, S.N., Samei, M.E., Alzabut, J., Chu, Y.M.: On multi-step methods for singular fractional q-integro-differential equations. Open Math. 19(1), 1378–1405 (2021)

    Article  MathSciNet  Google Scholar 

  • Hasheimi, M.S., Baleanu, D.: Lie Symmetry Analysis of Fractional Differential Equations. CRC Press, London (2020)

    Book  Google Scholar 

  • Hashemi, M.S.: Some new exact solutions of (2+ 1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative. Opt. Quant. Electron. 50(2), 1–11 (2018)

    Article  Google Scholar 

  • He, Z.Y., Abbes, A., Jahanshahi, H., Alotaibi, N.D., Wang, Y.: Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity. Mathematics 10(2), 165 (2022)

    Article  Google Scholar 

  • Iqbal, M.A., Wang, Y., Miah, M.M., Osman, M.S.: Study on date-Jimbo-Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 6(1), 4 (2021)

    Article  Google Scholar 

  • Jin, F., Qian, Z.S., Chu, Y.M., ur Rahman, M.: On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 12(2), 790–806 (2022)

    MathSciNet  Google Scholar 

  • Kaur, L., Wazwaz, A.M.: Optical solitons for perturbed Gerdjikov-Ivanov equation. Optik 174, 447–451 (2018)

    Article  ADS  Google Scholar 

  • Khodadad, F.S., Mirhosseini-Alizamini, S.M., Günay, B., Akinyemi, L., Rezazadeh, H., Inc, M.: Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation. Opt. Quant. Electron. 53(12), 1–17 (2021)

    Article  Google Scholar 

  • Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248–2253 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kumar, S.: Some new families of exact solitary wave solutions of the Klein-Gordon-Zakharov equations in plasma physics. Pramana 95(4), 1–15 (2021)

    ADS  Google Scholar 

  • Kumar, S., Rani, S.: Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2+ 1)-dimensional dissipative long wave system. Phys. Scr. 96(12), 125202 (2021)

    Article  ADS  Google Scholar 

  • Miura, R..M.: Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9(8), 1202–1204 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nirmala, N., Vedan, M.J., Baby, B.V.: Auto-Bäcklund transformation, Lax pairs, and Painlevé property of a variable coefficient Korteweg-de Vries equation. Int. J. Math. Phys. 27(11), 2640–2643 (1986)

    ADS  MATH  Google Scholar 

  • Rashid, S., Abouelmagd, E.I., Khalid, A., Farooq, F.B., Chu, Y.M.: Some recent developments on dynamical h-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernel. Fractals 30(2), 2240110 (2022)

    Article  ADS  MATH  Google Scholar 

  • Salas, A.: Special symmetries to standard Riccati equations and applications. Appl. Math. Comput. 216(10), 3089–3096 (2010)

    MathSciNet  MATH  Google Scholar 

  • Salas, A.H., Gómez, S.C.A.: Exact solutions for a third-order KdV equation with variable coefficients and forcing term. Math. Probl. Eng. 1, 1 (2009). https://doi.org/10.1155/2009/737928

    Article  MathSciNet  MATH  Google Scholar 

  • Srivastava, M.H., Günerhan, H., Ghanbari, B.: Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity. Math. Methods Appl. Sci. 42(18), 7210–7221 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, F., Khan, M.N., Ahmad, I., Ahmad, H., Abu-Zinadah, H., Chu, Y.M.: Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(02), 2240051 (2022)

    Article  ADS  MATH  Google Scholar 

  • Wazwaz, A.M.: The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations. Appl. Math. Comput. 188(2), 1467–1475 (2007)

    MathSciNet  MATH  Google Scholar 

  • Yang, L.C.: The applications of bifurvation method to a higher-order KdV equation. Math. Anal. Appl. 275, 1–12 (2012)

    Google Scholar 

  • Yıldırım, Y.: Optical soliton molecules of Manakov model by modified simple equation technique. Optik 185, 1182–1188 (2019)

    Article  ADS  Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., Akinyemi, L., Rezazadeh, H.: Optical solitons of nonlinear complex Ginzburg-Landau equation via two modified expansion schemes. Opt. Quant. Electron. 54(1), 1–15 (2022)

    Article  Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E.: New extended auxiliary equation method and its applications to nonlinear Schrödinger-type equations. Optik 127(20), 9131–9151 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez S, C., Roshid, HO., Inc, M. et al. On soliton solutions for perturbed Fokas–Lenells equation. Opt Quant Electron 54, 370 (2022). https://doi.org/10.1007/s11082-022-03796-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03796-4

Keywords

Navigation