Skip to main content
Log in

Shallow-donor impurity effects on the far infrared electron–electron optical absorption coefficient in single and core/shell spherical quantum dots with Konwent-like confinement potential

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, the electronic and optical properties of single or core/shell quantum dots, which are formed depending on the parameters in the selected Konwent potential, are investigated. Namely, the effects of the size and geometric shapes of quantum dots on the binding energy of the on-center donor impurity, the total absorption coefficient and refractive index which are including transitions between the some confined states, and the electromagnetically induced transparency between the lowest six confined states related to the donor impurity are investigated. We have used the diagonalization method by choosing a wave function based on the Bessel and Spherical Harmonics orthonormal function to find the eigenvalues and eigenfunctions of the electron confined within the quantum dots which have different types mentioned above. To calculate the optical absorption coefficients and electromagnetically induced transparency related to shallow-donor impurity, a two- and three-level approach in the density matrix expansion is used, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availibility

All the files with tables, figures, and codes are available. The corresponding author will provide all the files in case they are requested.

References

  • Adachi, S.: GaAs, AlAs, and Al\(_{x}\)Ga\(_{1-x}\)As: Material parameters for use in research and device applications. J. Appl. Phys. 58, R1–R29 (1985)

  • Al, E.B., Kasapoglu, E., Sari, H., Sökmen, I.: Zeeman splitting, Zeeman transitions and optical absorption of an electron confined in spherical quantum dots under the magnetic field. Philos. Mag. 101, 117–128 (2021)

    Article  ADS  Google Scholar 

  • Al, E.B., Kasapoglu, E., Sari, H., Sökmen, I.: Optical properties of spherical quantum dot in the presence of donor impurity under the magnetic field. Physica B 613, 412874 (2021)

    Article  Google Scholar 

  • Al-Khursan, A.H., Al-Khaykanee, M.K., Al-Mossawi, K.H.: Third-order non-linear susceptibility in a three-level QD system. Photonics Nanostruc. Fundam. Appl. 7, 153–160 (2009)

    Article  ADS  Google Scholar 

  • Arif, SMd., Bera, A., Ghosh, A., Ghosh, M.: Exploring noise-effect on the Intraband transition lifetime of impurity doped quantum dots. Biointerface Res. Appl. Chem. 11, 8639–8653 (2021)

    Google Scholar 

  • Atoyan, M.S., Kazaryan, E.M., Sarkisyan, H.: Interband light absorption in parabolic quantum dot in the presence of electrical and magnetic fields. Physica E 31, 83–85 (2006)

    Article  ADS  Google Scholar 

  • Bahramiyan, H., Khordad, R.: Optical Properties of a GaAs Pyramid Quantum Dot: Second- and Third-Harmonic Generation. Int. J. Mod. Phys. B 28, 1450053 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Barseghyan, M.G., Baghramyan, H.M., Kirakosyan, A.A., Laroze, D.: The transition from double to single quantum dot induced by THz laser field. Physica E 116, 113758 (2020)

    Article  Google Scholar 

  • Beausoleil, R.G., Munro, W.J., Rodrigues, D.A., Spiller, T.P.: Applications of electromagnetically induced transparency to quantum information processing. J. Mod. Opt. 51, 2441–2448 (2004)

    Article  ADS  MATH  Google Scholar 

  • Bejan, D.: Effects of electric field and structure on the electromagnetically induced transparency in double quantum dot. Opt. Mater 67, 145–154 (2017)

    Article  ADS  Google Scholar 

  • Böberl, M., Kovalenko, M.V., Pillwein, G., Brunthaler, G., Heiss, W.: Quantum dot nanocolumn photodetectors for light detection in the infrared. Appl. Phys. Lett. 92, 261113 (2008)

    Article  ADS  Google Scholar 

  • Çakir, B., Yakar, Y., Özmen, A.: Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential. J. Lumin. 132, 2659–2664 (2012)

    Article  Google Scholar 

  • Çakir, B., Yakar, Y., Özmen, A.: Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field. Physica B 510, 86–91 (2017)

    Article  ADS  Google Scholar 

  • COMSOL Multiphysics, v. 5.4. COMSOL AB, Stockholm (2012a)

  • COMSOL Multiphysics Reference Guide, Stockholm (2012b)

  • COMSOL Multiphysics Users Guide, Stockholm (2012c)

  • Chang, W.J., Park, K.Y., Zhu, Y., Wolverton, C., Hersam, M.C., Weiss, E.A.: \(n\)-doping of quantum dots by lithium ion intercalation. ACS Appl. Mater. Interfaces 12, 36523–36523 (2020)

  • Chiam, S.Y., Singh, R., Rockstuhl, C., Lederer, F., Zhang, W., Bettiol, A.A.: Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys. Rev. B 80, 153103 (2009)

    Article  ADS  Google Scholar 

  • Clarke, J., Chen, H., van Wijngaarden, W.A.: Electromagnetically induced transparency and optical switching in a rubidium cascade system. Appl. Opt. 40, 2047–2051 (2001)

    Article  ADS  Google Scholar 

  • Crnjanski, J.V., Gvozdic, D.M.: Self-consistent treatment of V-groove quantum wire band structure in nonparabolic approximation. Serb. J. Electr. Eng. 1, 69–77 (2004)

    Article  Google Scholar 

  • Dahiya, S., Lahon, S., Sharma, R.: Effects of temperature and hydrostatic pressure on the optical rectification associated with the excitonic system in a semi-parabolic quantum dot. Physica E 118, 113918 (2020)

    Article  Google Scholar 

  • Ducommun, Y., Kapon, E., Hohenester, U., Simserides, C., Molinari, E.: Optical spectra of single quantum dots: influence of impurities and few-particle effects. Phys. Stat. Sol. A 178, 283–290 (2000)

    Article  ADS  Google Scholar 

  • Duque, C.M., Correa, J.D., Morales, A.L., Mora-Ramos, M.E., Duque, C.A.: Laterally coupled circular quantum dots under applied electric field. Physica E 77, 34–43 (2016)

    Article  ADS  Google Scholar 

  • El Aouami, A., Bikerouin, M., Feddi, K., Aghoutane, N., El-Yadri, M., Feddi, E., Dujardin, F., Radu, A., Restrepo, R.L., Vinasco, J.A., Morales, A.L., Duque, C.A., Mora-Ramos, M.E.: Linear and nonlinear optical properties of a single dopant in GaN conical quantum dot with spherical cap. Philos. Mag. 100, 2503–2523 (2020)

    Article  ADS  Google Scholar 

  • Elborg, Martin, Noda, Takeshi, Mano, Takaaki, Kuroda, Takashi, Yao, Yuanzhao, Sakuma, Yoshiki, Sakoda, Kazuaki: Self-assembly of vertically aligned quantum ring-dot structure by multiple droplet epitaxy. J. Cryst. Growth 477, 239–242 (2017)

    Article  ADS  Google Scholar 

  • Erwin, Steven C., Lijun, Zu., Haftel, Michael I., Efros, Alexander L., Kennedy, Thomas A., Norris, David J.: Doping semiconductor nanocrystals. Nat. Lett. 436, 91–94 (2005)

    Article  ADS  Google Scholar 

  • Evangelou, S.: Tailoring second-order nonlinear optical effects in coupled quantum dot-metallic nanosphere structures using the Purcell effect. Microelectron. Eng. 215, 111019 (2019)

    Article  Google Scholar 

  • Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  • Ghajarpour-Nobandegani, S., Karimi, M.J.: Effects of hydrogenic impurity and external fields on the optical absorption in a ring-shaped elliptical quantum dot. Opt. Mater. 82, 75–80 (2018)

    Article  ADS  Google Scholar 

  • El Haouari, M., Talbi, A., Feddi, E., El Ghazi, H., Oukerroum, A., Dujardin, F.: Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Opt. Commun. 383, 231–237 (2017)

    Article  ADS  Google Scholar 

  • Harris, S.E., Yamamoto, Y.: Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611–3614 (1998)

    Article  ADS  Google Scholar 

  • Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  • Hayrapetyan, D.B., Kazaryan, E.M., Petrosyan, L.S., Sarkisyan, H.A.: Core/shell/shell spherical quantum dot with Kratzer confining potential: impurity states and electrostatic multipoles. Physica E 66, 7–12 (2015)

    Article  ADS  Google Scholar 

  • Heyn, C., Duque, C.A.: Donor impurity related optical and electronic properties of cylindrical \(GaAs-Al_{x}Ga_{1-x}As\) quantum dots under tilted electric and magnetic fields. Sci. Rep. 10, 9155 (2020)

  • Heyn, Ch., Zocher, M., Pudewill, L., Runge, H., Küster, A., Hansen, W.: Droplet etched GaAs quantum dots close to surfaces and metallic interfaces. J. Appl. Phys. 121(6), 044306 (2017)

    ADS  Google Scholar 

  • Holovatsky, V.A., Bernik, I.B., Yakhnevych, M.. Ya..: Effect of magnetic field on energy spectrum and localization of electron in CdS/HgS/CdS/HgS/CdS multilayered spherical nanostructure. Physica B 508, 112–117 (2017)

    Article  ADS  Google Scholar 

  • Holovatsky, V., Voitsekhivska, O., Bernik, I.: Effect of magnetic field on electron spectrum in spherical nano-structures. Condens. Matter. Phys. 17, 13702 (2014)

    Article  Google Scholar 

  • Holovatsky, V.A., Voitsekhivska, O.M., Ya Yakhnevych, M.: The effect of magnetic field and donor impurity on electron spectrum in spherical core-shell quantum dot. Superlattice Microst. 116, 9–16 (2018)

    Article  ADS  Google Scholar 

  • Holovatsky, V.A., Voitsekhivska, O.M., Yakhnevych, M.. Ya..: Effect of magnetic field on an electronic structure and intraband quantum transitions in multishell quantum dots. Physica E 93, 295–300 (2017)

    Article  ADS  Google Scholar 

  • Horiguchi, Naoto, Futatsugi, Toshiro, Nakata, Yoshiaki, Yokoyama, Naoki, Mankad, Tanaya, Petroff, Pierre M.: Quantum dot infrared photodetector using modulation doped InAs self-assembled quantum dots. Jpn. J. Appl. Phys. 38, 2559–2561 (1999)

    Article  ADS  Google Scholar 

  • Hosseinpour, P., Soltani-Vala, A., Barvestani, J.: Effect of impurity on the absorption of a parabolic quantum dot with including Rashba spin-orbit interaction. Physica E 80, 48–52 (2016)

    Article  ADS  Google Scholar 

  • Karabulut, I., Baskoutas, S.: Second and third harmonic generation susceptibilities of spherical quantum dots: effects of impurities, electric field and size. J. Comput. Theor. Nanosci. 6, 153–156 (2009)

    Article  Google Scholar 

  • Karaca Boz, F., Nisanci, B., Aktas, S., Okan, S.E.: Energy levels of GaAs/AlxGa1-xAs/AlAs spherical uantum dot with an impurity. Appl. Surf. Sci. 387, 76–81 (2016)

    Article  ADS  Google Scholar 

  • Kasapoglu, E., Ungan, F., Sari, H., Sökmen, I., Mora-Ramos, M.E., Duque, C.A.: Donor impurity states and related optical responses in triangular quantum dots under applied electric field. Superlattice Microst. 73, 171–184 (2014)

    Article  ADS  Google Scholar 

  • Khordad, R., Bahramiyan, H.: The second and third-harmonic generation of modified Gaussian quantum dots under influence of polaron effects. Superlattice Microst. 76, 163–173 (2014)

    Article  ADS  MATH  Google Scholar 

  • Khordad, R., Bahramiyan, H., Mohammadi, S.A.: Influence of impurity on binding energy and optical properties of lens shaped quantum dots: Finite element method and Arnoldi algorithm. Chin. J. Phys. 54, 20–32 (2016)

    Article  Google Scholar 

  • Kilic, D.G., Sakiroglu, S., Kasapoglu, E., Sari, H., Sökmen, I.: Impurity-modulated optical response of a disc-shaped quantum dot subjected to laser radiation. Photon. Nanostruct. 38, 100748 (2020)

    Google Scholar 

  • Konwent, H.: One-dimensional Schrödinger equation with a new type double-well potential. Phys. Lett. A 118, 467–470 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  • Kria, M., El-Yadri, M., Aghoutane, N., Pérez, L.M., Laroze, D., Feddi, E.: Forecasting and analysis of nonlinear optical responses by tuning the thickness of a doped hollow cylindrical quantum dot. Chin. J. Phys. 66, 444–452 (2020)

    Article  MathSciNet  Google Scholar 

  • Laroze, D., Barseghyan, M., Radu, A., Kirakosyan, A.A.: Laser driven impurity states in two-dimensional quantum dots and quantum rings. Physica B 501, 1–4 (2016)

    Article  ADS  Google Scholar 

  • Li, K., Guo, K., Liang, L.: Effect of the shape of quantum dots on the refractive index changes. Physica B 502, 146–150 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Lu, L., Xie, W., Hassanabadi, H.: The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods-Saxon potential. J. Lumin. 131, 2538–2543 (2011)

    Article  Google Scholar 

  • Ma, S.M., Xu, H., Ham, B.S.: Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime. Opt. Express 17, 14902–14908 (2009)

    Article  ADS  Google Scholar 

  • Makhlouf, D., Choubani, M., Saidi, F., Maaref, H.: Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shell quantum dot. Mater. Chem. Phys. 267, 124660 (2021)

    Article  Google Scholar 

  • Makkar, Mahima, Viswanatha, Ranjani: Frontier challenges in doping quantum dots: synthesis and characterization. RSC Adv. 8, 22103–22112 (2018)

    Article  ADS  Google Scholar 

  • Marangos, J.P., Halfmann, T.: Handbook of Optics, edited by M. Bass, 3rd edn. Vol. 4, New York: McGraw-Hill, 14(1), (2009)

  • McDonald, S.A., Cyr, P.W., Levina, L., Sargent, E.H.: Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors. Appl. Phys. Lett. 85, 2089 (2004)

    Article  ADS  Google Scholar 

  • Mora-Ramos, M.E., El Aouami, A., Feddi, E., Radu, A., Restrepo, R.L., Vinasco, J.A., Morales, A.L., Duque, C.A.: Donor impurity energy and optical absorption in spherical sector quantum dots. Heliyon 6, e03194 (2020)

    Article  Google Scholar 

  • Mora-Ramos, M.E., Vinasco, J.A., Laroze, D., Radu, A., Restrepo, R.L., Heyn, C., Tulupenko, V., Hieu, N.N., Phuc, H.V., Ojeda, J.H., Morales, A.L., Duque, C.A.: Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach. Sci. Rep. 11(16), 4015 (2021)

    ADS  Google Scholar 

  • Máthé, L., Onyenegecha, C.P., Farcaş, A.-A., Pioraş-Ţimbolmaş, L.-M., Solaimani, M., Hassanabadi, H.: Linear and nonlinear optical properties in spherical quantum dots: inversely quadratic Hellmann potential. Phys. Lett. 397, 127262 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Niculescu, E.C., Bejan, D.: Nonlinear optical properties of GaAs pyramidal quantum dots: effects of elliptically polarized radiation, impurity, and magnetic applied fields. Physica E 74, 51–58 (2015)

    Article  ADS  Google Scholar 

  • Niculescu, E.C., Stan, C., Cristea, M., Truscă, C.R.: Magnetic-field dependence of the impurity states in a dome-shaped quantum dot. Chem. Phys. 493, 32–41 (2017)

    Article  Google Scholar 

  • Papagiorgis, P., Stavrinadis, A., Othonos, A., Konstantatos, G., Itskos, G.: The influence of doping on the optoelectronic properties of PbS colloidal quantum dot solids. Sci. Rep. 6, 18735 (2016)

    Article  ADS  Google Scholar 

  • Pulgar-Velásquez, L., Sierra-Ortega, J., Vinasco, J.A., Laroze, D., Radu, A., Kasapoglu, E., Restrepo, R.L., Gil-Corrales, J.A., Morales, A.L., Duque, C.A.: Shallow donor impurity states with excitonic contribution in GaAs/AlGaAs and CdTe/CdSe truncated conical quantum dots under applied magnetic field. Nanomaterials 11(13), 2832 (2021)

    Article  Google Scholar 

  • Radu, C., Radu, A., Vinasco, J.A., Laroze, D., Restrepo, R.L., Tulupenko, V., Hieu, N.N., Phuc, H.V., Mora-Ramos, M.E., Ojeda, J.H., Morales, A.L., Duque, C.A.: Exciton states in conical quantum dots under applied electric and magnetic fields. Opt. Laser Technol. 139(13), 106953 (2021)

    Google Scholar 

  • Rahimi, F., Ghaffary, T., Naimi, Y., Khajehazad, H.: Effect of magnetic field on energy states and optical properties of quantum dots and quantum antidots. Opt. Quant. Electron. 53, 47–62 (2021)

    Article  Google Scholar 

  • Rahul, K.S., Devaraj, N., Babu, R.K., Mathew, S., Salini, K., Mathew, V.: Intraband absorption of \(D^{-}\) center in CdSe/CdS/CdSe/CdS multilayer quantum dot. J. Phys. Chem. Solid. 106, 99–104 (2017)

  • Rezaei, G., Kish, S.S.: Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: effects of hydrostatic pressure, external electric and magnetic fields. Superlattice Microst. 53, 99–112 (2013)

    Article  ADS  Google Scholar 

  • Sadeghi, E., Naghdi, E.: Effect of electric and magnetic fields on impurity binding energy in zinc-blend symmetric InGaN/GaN multiple quantum dots. Nano Converg. 1, 25 (2014)

    Article  Google Scholar 

  • Safarpour, Gh., Izadi, M.A., Novzari, M., Niknam, E.: External electric field effect on the nonlinear optical properties of a laser dressed donor impurity in a \(GaAs\) spherical quantum dot confined at the center of a \(Ga_{1-x}Al_{x}As\) cylindrical nano-wire. Indian J. Pure Appl. Phys. 53, 247–256 (2015)

  • Sargsian, T.A., Mkrtchyan, M.A., Sarkisyan, H.A., Hayrapetyan, D.B.: Effects of external electric and magnetic fields on the linear and nonlinear optical properties of InAs cylindrical quantum dot with modified Pöschl-Teller and Morse confinement potentials. Physica E 126, 114440 (2021)

    Article  Google Scholar 

  • Sari, H., Kasapoglu, E., Sakiroglu, S., Sökmen, I., Duque, C.A.: Impurity-related optical response in a 2D and 3D quantum dot with Gaussian confinement under intense laser field. Philos. Mag. 100, 619–641 (2020)

    Article  ADS  Google Scholar 

  • Segal, D., Nitzan, A.: Thermal conductance through molecular wires. J. Chem. Phys. 119, 6840 (2003)

    Article  ADS  Google Scholar 

  • Sharma, H.K., Boda, A., Boyacioglu, B., Chatterjee, A.: Electronic and magnetic properties of a two-electron Gaussian GaAs quantum dot with spin-Zeeman term: a study by numerical diagonalization. J. Magn. Magn. Mater. 469, 171–177 (2019)

    Article  ADS  Google Scholar 

  • Shi, L., Yan, Z.W.: Linear and nonlinear optical properties of an off-center donor in GaAs/AlGaAs and AlGaAs/GaAs core-shell ellipsoidal quantum dots. Superlattice Microst. 109, 382–393 (2017)

    Article  ADS  Google Scholar 

  • Stevanović, L., Filipović, N., Pavlović, V.: Effect of magnetic field on absorption coefficients, refractive index changes and group index of spherical quantum dot with hydrogenic impurity. Opt. Mater. 91, 62–69 (2019)

    Article  ADS  Google Scholar 

  • Sugawara, M., Hatori, N., Ebe, H., Ishida, M., Arakawa, Y., Akiyama, T., Otsubo, K., Nakata, Y.: Modeling room-temperature lasing spectra of 1.3-\(\mu\) m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection. J. Appl. Phys. 97, 043523 (2005)

  • Talbi, A., El Haouari, M., Nouneh, K., Pérez, L.M., Tiutiunnyk, A., Laroze, D., Courel, M., Mora-Ramos, M.E., Feddi, E.: LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model. Appl. Phys. A 127, 1–17 (2021)

    Article  Google Scholar 

  • Tiutiunnyk, A., Tulupenko, V., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Sari, H., Sökmen, I., Duque, C.A.: Electron-related optical responses in triangular quantum dots. Physica E 60, 127–132 (2014)

    Article  Google Scholar 

  • Vahdani, M.R.K.: The effect of the electronic intersubband transitions of quantum dots on the linear and nonlinear optical properties of dot-matrix system. Superlattice Microst. 76, 326–338 (2014)

    Article  ADS  Google Scholar 

  • Varshni, Y.P.: Effect of an intense laser field on donor impurities in spherical quantum dots. Superlattice. Microst. 30, 45–52 (2001)

    Article  ADS  Google Scholar 

  • Xu, Q., Sandhu, S., Povinelli, M.L., Shakya, J., Fan, S., Lipson, M.: Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006)

    Article  ADS  Google Scholar 

  • Zhang, Z.H., Guo, K.X., Chen, B., Wang, R.Z., Kang, M.W., Shao, S.: Theoretical studies on the optical absorption coefficients and refractive index changes in parabolic quantum dots in the presence of electric and magnetic fields. Superlattice Microst. 47, 325–334 (2010)

    Article  ADS  Google Scholar 

  • Zhang, Hui, Liu, Jiabin, Wang, Chao, Selopal, Gurpreet S., Barba, David, Wang, Zhiming M., Sun, Shuhui, Zhao, Haiguang, Rosei, Federico: Near-infrared colloidal manganese doped quantum dots: photoluminescence mechanism and temperature response. ACS Photonics 6, 2421–2431 (2019)

    Article  Google Scholar 

  • Zhang, S., Zhou, S., Loy, M.M.T., Wong, G.K.L., Du, S.: Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble. Opt. Lett. 36, 4530–4532 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CAD is grateful to the Colombian Agencies: CODI-Universidad de Antioquia (Estrategia de Sostenibilidad de la Universidad de Antioquia and projects “Propiedades magneto-ópticas y óptica no lineal en superredes de Grafeno”, “Estudio de propiedades ópticas en sistemas semiconductores de dimensiones nanoscópicas”, and “Propiedades de transporte, espintrónicas y térmicas en el sistema molecular ZincPorfirina”), and Facultad de Ciencias Exactas y Naturales-Universidad de Antioquia (CAD exclusive dedication project 2021-2022). CAD also acknowledges the financial support from El Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas (project: CD 111580863338, CT FP80740-173-2019)

Funding

The research was supported by El Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas (project: CD 111580863338, CT FP80740-173-2019).

Author information

Authors and Affiliations

Authors

Contributions

The contributions of the authors are as follows: EBA: was responsible for numerical calculations, figures and writing of the manuscript. EK: proposed the problem and responsible for writing and editing the comments. HS: was responsible for the verification of the solution method. IS: proposed the solution method. CAD: was responsible for writing and editing the comments.

Corresponding authors

Correspondence to E. Kasapoglu or C. A. Duque.

Ethics declarations

Conflict of interest

The authors do not have any financial and non-financial competing interests statement.

Consent to Participate

All co-authors participated actively in this research and agree with the final version of the manuscript.

Consent to Publish

All co-authors agree with the final version of the manuscript and give their consent for it to be published, accepting all the ethical standards of the journal. The co-authors certify that this manuscript has not been published elsewhere and that it is not under consideration for publication in another journal. All relevant information has been placed in the manuscript in such a way that we guarantee the reproducibility of our research by other researchers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al, E.B., Kasapoglu, E., Sari, H. et al. Shallow-donor impurity effects on the far infrared electron–electron optical absorption coefficient in single and core/shell spherical quantum dots with Konwent-like confinement potential. Opt Quant Electron 54, 375 (2022). https://doi.org/10.1007/s11082-022-03758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03758-w

Keywords

Navigation