Skip to main content
Log in

Hybrid lattice shaped dual polarized highly sensitive surface plasmon resonance based refractive index sensor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Behavioral analysis of a photonic crystal fiber-based sensor with a high amplitude sensitivity is elicited in this paper. Multiple airhole diameters were intentionally used in the structure for attaining a high amplitude sensitivity, and the structure was built on a hybrid lattice configuration rather than hexagonal or square to extract the maximum out of circular analyte type PCF. Gold is the plasmonic medium, and the analyte is introduced in the outer layer of the structure. A perfectly matched layer (PML) was imputed in the structure to collect reflected light. The structure was consistent in its efficacy for all analyte refractive indices from 1.30 to 1.41. The maximum and the average wavelength sensitivity (SW) for both x and y modes are 12,000 nm/RIU and 3272 nm/RIU respectively. The highest amplitude sensitivity (SA) recorded is 5900RIU−1 for x-polarized(pol) light from refractive index (RI) 1.39 to 1.40. The average amplitude sensitivity is 1019.66 RIU−1 and 892.08 RIU−1 respectively, for x and y-polarized modes. The sensor has a resolution of 8.33 × 10–6 which implies it can detect the changes of 10–6 order in the analyte refractive index. This structure also has a figure of merit (FOM) of 545.45 RIU−1, resulting in an excellent detection limit. Due to its sterling amplitude sensitivity, feasible configuration, long functioning biosensing refractive index range, and high FOM, the proposed structure has the potential to be a utilitarian entity in the field of refractive index-based bio or chemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • Akter, S., Rahman, M.Z., Mahmud, S.: Highly sensitive open-channels based plasmonic biosensor in visible to near-infrared wavelength. Results Phys. 13, 102328 (2019)

    Article  Google Scholar 

  • An, G., Li, S., Wang, H., Zhang, X., Yan, X.: Quasi-D-shaped optical fiber plasmonic refractive index sensor. J. Opt. 20, 035403 (2018)

    Article  ADS  Google Scholar 

  • Bing, P., Huang, S., Sui, J., Wang, H., Wang, Z.: Analysis and improvement of a dual-core photonic crystal fiber sensor. Sensors 18, 2051 (2018)

    Article  ADS  Google Scholar 

  • Chen, N., Chang, M., Zhang, X., Zhou, J., Lu, X., Zhuang, S.: Highly sensitive plasmonic sensor based on a dual-side polished photonic crystal fiber for component content sensing applications. Nanomaterials 9, 1587 (2019)

    Article  Google Scholar 

  • Dong, J., Zhang, Y., Wang, Y., Yang, F., Hu, S., Chen, Y., et al.: Side-polished few-mode fiber based surface plasmon resonance biosensor. Opt. Exp. 27, 11348–11360 (2019)

    Article  Google Scholar 

  • Evans, S.V., Roger MacKenzie, C.: Characterization of protein–glycolipid recognition at the membrane bilayer. J. Mol. Recogn. 12, 155–168 (1999)

    Article  Google Scholar 

  • Hassan, M. F. B., Sultana, S., Isti, M. I. A.S., Nuzhat, S. Biswas, K., Talukder, H.: Liquid benzene analyte based dual core surface plasmon resonance sensor for chemical sensing, 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2020, pp. 1–6, https://doi.org/10.1109/ICCCNT49239.2020.9225505.

  • Gandhi, M., Chu, S., Senthilnathan, K., Babu, P.R., Nakkeeran, K., Li, Q.: Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl. Sci. 9, 949 (2019)

    Article  Google Scholar 

  • Griffiths, M.B., Pallister, P.J., Mandia, D.J., et al.: Atomic layer deposition of gold metal. Chem. Mater. 28(1), 44–46 (2015)

    Article  Google Scholar 

  • Homola, J.: Present and future of SPR biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  Google Scholar 

  • Islam, M.R., Khan, M.M.I., Al Rafid, R., Mehjabin, F., Rashid, M.S., Chowdhury, J.A., Zerin, N., Islam, M.: Trigonal cluster-based ultra-sensitive surface plasmon resonance sensor for multipurpose sensing. Sens. Bio-Sens. Res. 35, 100477 (2022)

    Article  Google Scholar 

  • Isti, M.I.A., Talukder, H., Islam, S.M.R., Nuzhat, S., Hosen, S.M.S., Cho, G.H., Biswas, S.K.: Asymmetrical D-channel photonic crystal fiber-based plasmonic sensor using the wavelength interrogation and lower birefringence peak method. Results Phys. 19, 103372 (2020)

    Article  Google Scholar 

  • Jabin, M.A., Ahmed, K., Rana, M.J., Paul, B.K., Islam, M., Vigneswaran, D., et al.: SPR based titanium coated biosensor for cancer cell detection. IEEE Photon. J. 11, 1–10 (2019)

    Article  Google Scholar 

  • Johnson, P.B., Christy, R.-W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  • Jorgenson, R.C., Yee, S.S.: A fiber-optic chemical sensor based on the surface plasmon resonance. Sens. Actuators B, Chem. 12(3), 213–220 (1993)

    Article  Google Scholar 

  • Kim, J.-C., Kim, H.-K., Paek, U.-C., Lee, B.-H., Eom, J.: The fabrication of a photonic crystal fiber and measurement of its properties. J. Opt. Soc. Korea - J OPT SOC KOREA. 7, 79–83 (2003). https://doi.org/10.3807/JOSK.2003.7.2.079

    Article  Google Scholar 

  • Li, T., Zhu, L., Yang, X., Lou, X., Yu, L.: A refractive index sensor based on H-shaped PCFs coated with AgGraphene layers. Sensors 20, 741 (2020)

    Article  ADS  Google Scholar 

  • Liedberg, B., Nylander, C., Lunstr¨om, I.: Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  • Nguyen, H.H., Park, J., Kang, S., Kim, M.: Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15, 10481–10510 (2015)

    Article  ADS  Google Scholar 

  • Nuzhat, S., Isti, M. I. A., Talukder, H., Biswas S. K.: Dual core surface plasmon resonance based photonic crystal fiber sensor In IR-range 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, pp. 1–4, (2020) Doi: https://doi.org/10.1109/ICCCNT49239.2020.9225297

  • Pathak, A.K., Singh, V.K.: spr based optical fiber refractive index sensor using silver nanowire assisted CSMFC. IEEE Photon. Technol. Lett. 32, 465–468 (2020)

    Article  ADS  Google Scholar 

  • Pathak, A.K., Singh, V.K., Ghosh, S., Rahman, B.M.A.: Investigation of an SPR based refractive index sensor using a single mode fiber with a large D shaped microfluidic channel. OSA Contin. 2(11), 3008 (2019)

    Article  Google Scholar 

  • Ritchie, R.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  • Rodkey, F. L.: Aqueous solutions and body fluids. their concentrative properties and conversion tables. AV Wolf. Hoeber Medical Division, Harper and Row, Publishers, New York, 1966, 182 pp., 8 illus., 7.50,” ed: Clinical Chemistry, (1966)

  • Sakib, M.N., Islam, S.R., Mahendiran, T., Abdulrazak, L.F., Islam, M.S., Mehedi, I.M., et al.: Numerical study of circularly slotted highly sensitive plasmonic biosensor: a novel approach. Results Phys. 17, 103130 (2020)

    Article  Google Scholar 

  • Sultana, S., Haassan, M., Bin, F., Biswas, S.K., Talukder, H.: A highly sensitive gold-TiO2 coated dual-core PCF-SPR sensor with a large detection range. (2021) https://doi.org/10.1007/978-981-16-5048-2_33.

  • Talukder, H., Isti, M.I.A., Nuzhat, S., Biswas, S.K.: Ultra-high negative dispersion based single mode highly nonlinear bored Core PCF (HNL-BCPCF): design and numerical analysis. Brazilian J. Phys. 50, 1–9 (2020)

    Article  Google Scholar 

  • Xia, S.-X., Zhai, X., Wang, L.-L., Sun, B., Liu, J.-Q., Wen, S.-C.: Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt. Exp. 24, 17886–17899 (2016)

    Article  Google Scholar 

  • Xia, S.-X., Zhai, X., Wang, L.-L., Wen, S.-C.: Plasmonically induced transparency in double-layered graphene nanoribbons. Photon. Res. 6, 692–702 (2018)

    Article  Google Scholar 

  • Zeder-Lutz, G., Zuber, E., Witz, J., Van Regenmortel, M.H.: Thermodynamic analysis of antigen–antibody binding using biosensor measurements at different temperatures. Anal. Biochem. 246, 123–132 (1997)

    Article  Google Scholar 

  • Zenneck, J.: Propagation of plane EM waves along a plane conducting surface. Ann. Phys. (leipzig) 23, 907 (1907)

    Google Scholar 

Download references

Acknowledgements

This work was done under the supervision and full support of the Department of Electrical and Electronic Engineering (EEE) of Shahjalal University of Science and Technology, Sylhet. The authors also declare no conflict of interest in this paper.

Funding

The authors do not have any funding available for this study..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiha Nuzhat.

Ethics declarations

Conflict of interest

The authors do not have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuzhat, S., Bin Hassan, M.F., Sultana, S. et al. Hybrid lattice shaped dual polarized highly sensitive surface plasmon resonance based refractive index sensor. Opt Quant Electron 54, 294 (2022). https://doi.org/10.1007/s11082-022-03695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03695-8

Keywords

Navigation