Skip to main content
Log in

Plasmonic InAs quantum dot MSM nanolaser with low threshold gain

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This work presented a numerical model for calculating threshold material gain in a plasmonic quantum dot (QD) nanolaser based on the group index. The presence of the silver (Ag) metal in the structure makes the valence band Fermi energy deepen. Then, for the plasmonic QD nanolaser (compared to conventional QD laser), the refractive index value doubles while the group velocity is lower by half. The quality factor is increased where high energy can be stored in the cavity. The threshold gain value lowers the material gain by more than ten orders. A comparison with experimental results predicts the possibility of high power applications for this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials used are listed in Tables 1 and 2 below.

References

  • Al-Husseini, H., Al-Khursan, A.H., Al-Dabagh, S.Y.: III-N QD lasers. Open Nanosci. J. 3, 1–11 (2009)

    Article  ADS  Google Scholar 

  • Al-Nashy, B., Amin, S.M.M., Al-Khursan, A.H.: Kerr effect in Y- configuration double quantum dot System. J. Opt. Soc. Am. B 31, 1991–1996 (2014)

    Article  ADS  Google Scholar 

  • Bergman, D.J., Stockman, M.I.: Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003)

    Article  ADS  Google Scholar 

  • Bobba, S.S., Hamdouni, N., Pande, K., Namassivayane, K., Agrawal, A., Grattan, K.T.V.: Design and optimization of perovskite plasmonic nanolaser for operation at room temperature. J. Laser Appl. 32, 022017 (2020)

    Article  ADS  Google Scholar 

  • Chang, S., Chuang, S.L.: Fundamental formulation for plasmonic nanolaser. IEEE J. Quantum Electron. 45, 1014–1023 (2009)

    Article  ADS  Google Scholar 

  • Chang, S.W., Lin, T.R., Chuang, S.L.: Theory of plasmonic fabry-perot nanolasers. Opt. Express 18, 15039–15053 (2010)

    Article  ADS  Google Scholar 

  • Chang, S., Lu, C., Chuang, S.L., Germann, T.D., Pohl, U.W., Bimberg, D.: Theory of metal-cavity surface-emitting microlasers and comparison with experiment. IEEE J. Select. Top. Quantum Electron. 17, 1681 (2011)

    Article  ADS  Google Scholar 

  • Dwara, S.N., Al-Khursan, A.H.: Quantum efficiency of InSbBi quantum dot photodetector. Appl. Opt. 54, 9722–9727 (2015)

    Article  ADS  Google Scholar 

  • Fan, Y., AlanShore, K.: Design of room temperature electrically pumped visible semiconductor nanolasers. IEEE J. Q. Electron. 54, 2000907 (2018)

    Article  Google Scholar 

  • Guo, C., Che, K., Gu, G., Cai, G., Cai, Z., Xu, H.: Tailoring the plasmonic whispering gallery modes of a metal-coated resonator for potential application as a refractometric sensor. App. Opt. 54, 1250 (2015)

    Article  ADS  Google Scholar 

  • Han, Y.J., Li, L.H., Zhu, J., Valavanis, A., Freeman, J.R., Chen, L., Rosamond, M., Dean, P., Davies, A.G., Linfield, E.H.: Silver-based surface plasmon waveguide for terahertz quantum cascade lasers. Opt. Exp. 26, 4 (2018)

    Google Scholar 

  • Jabir, J.N., Ameen, S.M.M., Al-Khursan, A.H.: Plasmonic quantum dot nanolaser: effect of waveguide fermi energy. Plasmonics 14, 1881–1891 (2019)

    Article  Google Scholar 

  • Kim, J., Chuang, S.L.: Optical gain, refractive index change and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J. Quantum Electron. 42, 942–952 (2006)

    Article  ADS  Google Scholar 

  • Li, D.B., Ning, C.Z.: Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure. Phys. Rev. B 80, 153304 (2009)

    Article  ADS  Google Scholar 

  • Li, D.B., Ning, C.Z.: Peculiar features of confinement factors in a metal-semiconductor waveguide. Appl. Phys. Lett. 96, 181109 (2010)

    Article  ADS  Google Scholar 

  • Lu, C., Chuang, S.L.: A surface-emitting 3D metal-nanocavity laser: proposal and theory. Opt. Express 19, 13225–13244 (2011)

    Article  ADS  Google Scholar 

  • Lu, C., Chang, S., Chuang, S.L., Germann, T.D., Bimberg, D.: Metal-cavity surface-emitting microlaser at room temperature. App. Phys. Lett. 96, 251101 (2010)

    Article  ADS  Google Scholar 

  • Lu, C., Chuang, S.L., Bimberg, D.: Metal-cavity surface-emitting nanolasers. IEEE J. Quantum Electron. 49, 1 (2013)

    Article  Google Scholar 

  • Ni, C.A., Chang, S., Gargas, D.J., Moore, M.C., Yang, P., Chuang, S.L.: Metal-coated zinc oxide nanocavities. IEEE J. Quantum Electron. 47, 245–251 (2011)

    Article  ADS  Google Scholar 

  • Wang, J., Wei, W., Yan, X., Zhang, J., Zhang, X., Ren, X.: Near-infrared hybrid plasmonic multiple quantum well nanowire lasers. Opt. Express 25, 9358–9367 (2017)

    Article  ADS  Google Scholar 

  • Xu, P., Shi, Y.: High Q/V hybrid plasmonic photonic crystal nanobeam cavity: Towards low threshold nanolasers application. Opt. Commun. 311, 234–238 (2013)

    Article  ADS  Google Scholar 

  • Zheng, J., Yan, X., Wei, W., Wu, C., Sibirev, N., Zhang, X., Ren, X.: A Low-Threshold Miniaturized Plasmonic Nanowire Laser with High-Reflectivity Metal Mirrors. Nanomaterials 10, 1928 (2020)

    Article  Google Scholar 

Download references

Funding

No funding found.

Author information

Authors and Affiliations

Authors

Contributions

The authors are contributed equally to this work.

Corresponding author

Correspondence to Amin Habbeb Al-Khursan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabir, J.N., Al-Khursan, A.H. Plasmonic InAs quantum dot MSM nanolaser with low threshold gain. Opt Quant Electron 54, 247 (2022). https://doi.org/10.1007/s11082-022-03632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03632-9

Keywords

Navigation