Skip to main content
Log in

Plasmonic Quantum Dot Nanolaser: Effect of “Waveguide Fermi Energy”

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This study models quantum dot (QD) plasmonic nanolaser. A metal/semiconductor/metal (MSM) structure was considered to attain plasmonic nanocavity. The active region (semiconductor layers) contains the following: QD, wetting layer (WL), and barrier layers. Band alignment between layers was used to predict their parameters. Momentum matrix element for transverse magnetic (TM) mode in QD structure was formulated. Waveguide Fermi energy was introduced and formulated, for the first time, in this work to cover the waveguide contribution (Ag metal layer) in addition to the active region. The high net modal gain was obtained when the waveguide Fermi energy was considered which meant that the increment comes from the material gain, not from the confinement factor. The obtained results were reasoned the high gain due to the change in waveguide Fermi energy in the valence band, where the valence band QD states are fully occupied that are referring to an efficient hole contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chang S-W, Lin T-R, Chuang SL (2010) Theory of plasmonic Fabry-Perot nanolasers. Opt Express 18:15039–15053

    Article  CAS  Google Scholar 

  2. Ni C-YA, Chang S-W, Gargas DJ, Moore MC, Yang P, Chuang SL (2011) Metal-coated zinc oxide nanocavities. IEEE J Quantum Electron 47:245–251

    Article  CAS  Google Scholar 

  3. Lu C-Y, Chuang SL (2011) A surface-emitting 3D metal-nanocavity laser: proposal and theory. Opt Express 19:13225–13244

    Article  CAS  Google Scholar 

  4. Chang S-W, Ni C-YA, Chuang SL (2008) Theory for bowtie plasmonic nanolasers. Opt Express 16:10580–10595

    Article  Google Scholar 

  5. Dwara SN, Al-Khursan AH (2015) Quantum efficiency of InSbBi quantum dot photodetector. Appl Opt 54:9722–9727

    Article  CAS  Google Scholar 

  6. Li DB, Ning CZ (2010) Peculiar features of confinement factors in a metal-semiconductor waveguide. Appl Phys Lett 96:181109

    Article  Google Scholar 

  7. Chang SW, Chuang SL (2009) Fundamental formulation for plasmonic nanolaser. IEEE J Quantum Electron 45:1014–1023

    Article  CAS  Google Scholar 

  8. Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G (2008) Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J Quantum Electron 44:658–666

    Article  CAS  Google Scholar 

  9. Li DB, Ning CZ (2009) Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure. Phys Rev B 80:153304

    Article  Google Scholar 

  10. Yu H, Schaekers M, Barla K, Horiguchi N, Collaert N, Thean AV-Y, De Meyer K (2016) Contact resistivities of metal-insulator-semiconductor contacts and metal-semiconductor contacts. Appl Phys Lett 108:171602

    Article  Google Scholar 

  11. Agrawal A, Lin J, Barth M, White R, Zheng B, Chopra S, Gupta S, Wang K, Gelatos J, Mohney SE, Datta S (2014) Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts. App Phys Lett 104:112101

    Article  Google Scholar 

  12. Orfanidis SJ (2014) Electromagnetic waves and antennas. Rutgers University

  13. Krishnamurthy V, Klein B (2008) Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers. IEEE J Quantum Electron 44:67–74

    Article  CAS  Google Scholar 

  14. Ikeda K, Fainman Y, Alan Shore K, Kawaguchi H (2011) Modified long-range surface plasmon polariton modes for laser nanoresonators. J Appl Phys 110:063106

    Article  Google Scholar 

  15. Numai T (2015) Fundamentals of semiconductor lasers. Springer

  16. Huang YZ, Pan Z, Wu RH (1996) Analysis of the optical confinement factor in semiconductor lasers. J Appl Phys 79:3827

    Article  CAS  Google Scholar 

  17. Chuang SL (2009) Physics of photonic devices, 2nd edn. Wiley

  18. Coldren LA, Crozine SW, Milan L (2012) Masanovic, diode lasers and photonic integrated circuits, 2nd edn. Wiley

  19. Chang SW, Chuang SL (2009) Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media. Opt Lett 34:91–93

    Article  Google Scholar 

  20. Kim J, Chuang SL (2006) Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J Quantum Electron 42:942–952

    Article  CAS  Google Scholar 

  21. Al-Husseini H, Amin H, Al-Khursan, Al-Dabagh SY (2009) III-N QD lasers. Open Nanosci J 3:1–11

    Article  CAS  Google Scholar 

  22. Asada M, Miyamoto Y, Suematsu Y (1986) Gain and the threshold of three-dimensional quantum-box lasers. IEEE J Quantum Electron 22:1915–1921

    Article  Google Scholar 

  23. Zory PS (1993) Quantum well lasers. Elsevier

  24. Abbas MN, Mohammed DS (2015) Quality factor improvement for nano cavity. Int J Comput Appl 127:22–25

    Google Scholar 

  25. Yu H, Schaekers M, Schram T, Demuynck S, Horiguchi N, Barla K, Collaert N, Thean A, De Meyer KM (2016) Thermal stability concern of metal-insulator semiconductor contact: a case study of Ti/TiO2/n-Si contact. IEEE Trans Electron Devices 63:2671–2676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Habbeb Al-Khursan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabir, J.N., Ameen, S.M.M. & Al-Khursan, A.H. Plasmonic Quantum Dot Nanolaser: Effect of “Waveguide Fermi Energy”. Plasmonics 14, 1881–1891 (2019). https://doi.org/10.1007/s11468-019-00981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00981-2

Keywords

Navigation