Skip to main content
Log in

Exploration of multi-metallic thin layer/MgF2 in side-polished optical fiber as long-range surface plasmons (LRSPs) alcohol sensor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper explores computational and experimental analysis based on configuration using multi-metallic thin layer and dielectric buffer layer (DBL) using side-polished single mode optical fiber as alcohol sensor concentration based on refractive index change. The computational analysis has been carried out using COMSOL Multiphysics 5.3a to investigate the sensing performance of the device. The simulations are based on configuration models with integration of thin layer of silver (Ag), gold (Au) and DBL layer. To observe the effectively function of magnesium fluoride (MgF2) to the reflection dips in the SPR modes, the thickness of MgF2 layer is optimized at 50 nm. The simulation analysis from these configurations namely is MgF2–Au/Ag and MgF2–Au/Ag–MgF2 which performs the best sensing comparison. Configuration of MgF2–Ag–MgF2 shows higher sensitivity value as 2812.5 nm/RIU (Refractive Index Unit) at RI of 1.37–1.38 and 1762.5 nm/RIU at lower RI of 1.33–1.34 for MgF2–Ag configuration. Our calculations also reveal that SPR modes corresponding with MgF2 layer are very sensitive to any changes in the surrounding medium as compared to the conventional SPR sensor reported before. The outcomes indicate the proposed LRSPs based models with specific dielectric of MgF2 found to be an important role in chemical and biological sensing as this structure contributes to high sensitivity, high resolution, and deeper penetration depth where it has great potential for label-free sensing and detection of macromolecules and biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aly, A.H., et al.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10(53), 31765–31772 (2020)

    Article  ADS  Google Scholar 

  • Barchiesi, D., Grosges, T.: Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth. J. Nanophotonics 8(1), 083097-1 (2014)

    Article  ADS  Google Scholar 

  • Berini, P.: Long-range surface plasmon polaritons. Adv. Opt. Photonics 1(3), 484–588 (2009)

    Article  ADS  Google Scholar 

  • Cao, Z., Wu, L., Li, D.: Distributed optical fiber surface plasmon resonance sensors. Chin. Opt. Lett. 4(3), 160–163 (2006)

    ADS  Google Scholar 

  • Chakma, S., et al.: Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens. Bio-Sens. Res. 18, 7–12 (2018)

    Article  Google Scholar 

  • Chen, C.-H., et al.: A multi-D-shaped optical fiber for refractive index sensing. Sensors 10(5), 4794–4804 (2010)

    Article  ADS  Google Scholar 

  • Chiu, P.K., et al.: Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature. Nanoscale Res. Lett. 7(1), 304 (2012)

    Article  ADS  Google Scholar 

  • Feng, X., et al.: Long range surface plasmon resonance sensor based on side polished fiber with the buffer layer of magnesium fluoride. Opt. Quantum Electron. 49(4), 147 (2017)

    Article  Google Scholar 

  • Gooch, J.W.: Sellmeier equation. In: Gooch, J.W. (ed.) Encyclopedic Dictionary of Polymers, pp. 653–654. Springer, New York (2011)

    Chapter  Google Scholar 

  • Gupta, B.D., Sharma, A.K.: Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens. Actuators B Chem. 107(1), 40–46 (2005)

    Article  Google Scholar 

  • Haque, E., et al.: Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens. J. 18(20), 8287–8293 (2018)

    Article  ADS  Google Scholar 

  • Hasan, M.R., et al.: Design of a surface plasmon resonance refractive index sensor with high sensitivity. Opt. Eng. 56(8), 087101 (2017). https://doi.org/10.1117/1.OE.56.8.087101

  • Iadicicco, A., et al.: Thinned fiber Bragg gratings as refractive index sensors. IEEE Sens. J. 5(6), 1288–1295 (2005)

    Article  ADS  Google Scholar 

  • Jing, J.-Y., et al.: A D-type fiber based symmetrical long-range surface plasmon resonance sensor with high quality factor. Measurement 140, 395–406 (2019)

    Article  ADS  Google Scholar 

  • Kadhim, R.A., et al.: Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag-α-Fe2O3 grating. IEEE Sens. J. 20(17), 9816–9824 (2020)

    Article  ADS  Google Scholar 

  • Karlsson, R., Michaelsson, A., Mattsson, L.: Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J. Immunol. Methods 145(1–2), 229–240 (1991)

    Article  Google Scholar 

  • Kimura, Y., Seki, A., Watanabe, K.: Ethanol measurement using hetero-core structured optical fiber covered with layer-by-layer thin film. Foods (basel, Switzerland) 7(8), 117 (2018). https://doi.org/10.3390/foods7080117

  • Komanec, M., et al.: Structurally-modified tapered optical fiber sensors for long-term detection of liquids. Opt. Fiber Technol. 47, 187–191 (2019)

    Article  ADS  Google Scholar 

  • Kullab, H.M., Taya, S.A.: Peak type metal-clad waveguide sensor using negative index materials. AEU Int. J. Electron. Commun. 67(11), 984–986 (2013)

    Article  Google Scholar 

  • Leong, E.S.P., et al.: Effect of Surface morphology on the optical properties in metal−dielectric−metal thin film systems. ACS Appl. Mater. Interfaces 3(4), 1148–1153 (2011)

    Article  Google Scholar 

  • Lin, Y.-C.: A fiber-optic alcohol sensor based on surface plasmon resonance. Microw. Opt. Technol. Lett. 56, 766–769 (2014)

    Article  Google Scholar 

  • Liu, C., et al.: Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection. Plasmonics 13(3), 779–784 (2018)

    Article  Google Scholar 

  • Liu, Y., et al.: Long-range surface plasmon resonance configuration for enhancing sers with an adjustable refractive index sample buffer to maintain the symmetry condition. ACS Omega 5(51), 32951–32958 (2020)

    Article  Google Scholar 

  • Melo, A.A., et al.: Investigation of a D-shaped optical fiber sensor with graphene overlay. IFAC-PapersOnLine 51(27), 309–314 (2018)

    Article  Google Scholar 

  • Mishra, A.K., Mishra, S.K., Gupta, B.D.: SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun. 344, 86–91 (2015)

    Article  ADS  Google Scholar 

  • Natesan, A., et al.: Tricore photonic crystal fibre based refractive index sensor for glucose detection. IET Optoelectron. 13, 118–123 (2019)

    Article  Google Scholar 

  • Paliwal, A., Tomar, M., Gupta, V.: Refractive index sensor using long-range surface plasmon resonance with prism coupler. Plasmonics 14(2), 375–381 (2019)

    Article  Google Scholar 

  • San-Liang, L.: Analytical formula of wavelength-dependent transparent current and its implications for designing wavelength sensors and WDM lasers. IEEE J. Sel. Top. Quantum Electron. 7(2), 201–209 (2001)

    Article  ADS  Google Scholar 

  • Sarid, D.: Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 47(26), 1927–1930 (1981)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Gupta, B.D.: On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101(9), 093111 (2007). https://doi.org/10.1063/1.2721779

  • Shi, H., et al.: A symmetrical optical waveguide based surface plasmon resonance biosensing system. Sens. Actuators B Chem. 185, 91–96 (2013)

    Article  Google Scholar 

  • Stefaniuk, T., et al.: Optimum deposition conditions of ultrasmooth silver nanolayers. Nanoscale Res. Lett. 9(1), 153 (2014). https://doi.org/10.1186/1556-276X-9-153

  • Su, Z., Yin, J., Zhao, X.: Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures. Opt. Express 23(2), 1679–1690 (2015)

    Article  ADS  Google Scholar 

  • Sun, Z., et al.: Microstructure and optical properties of Ag/ITO/Ag multilayer films. Nanoscale Res. Lett. 8(1), 424 (2013). http://www.nanoscalereslett.com/content/8/1/424

  • Taitt, C.R., Anderson, G.P., Ligler, F.S.: Evanescent wave fluorescence biosensors. Biosens. Bioelectron. 20(12), 2470–2487 (2005)

    Article  Google Scholar 

  • Tanaka, D., et al.: High-sensitivity surface plasmon resonance sensors utilizing high-refractive-index silver nanoparticle sheets. Jpn. J. Appl. Phys. 53(1), 01AF01 (2013)

  • Taya, S.A., et al.: Surface plasmon resonance-based optical sensor using a thin layer of plasma. J. Opt. Soc. Am. B 38(8), 2362–2367 (2021)

    Article  ADS  Google Scholar 

  • Tien, C.-L., Lin, H.-Y., Su, S.-H.: High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm. Adv. Condens. Matter Phys. 2018, 2303740 (2018)

  • Wark, A.W., Lee, H.J., Corn, R.M.: Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal. Chem. 77(13), 3904–3907 (2005)

    Article  Google Scholar 

  • Zainuddin, N.A.M., et al.: Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor. Results Phys. 13, 102255 (2019)

  • Zaky, Z.A., et al.: Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: theoretical optimisation. Sci. Rep. 10(1), 9736 (2020)

    Article  ADS  Google Scholar 

  • Zhang, Z., et al.: Design and optimization of surface plasmon resonance sensor based on polymer-tipped optical fiber. J. Lightwave Technol. 37(11), 2820–2827 (2019)

    Article  ADS  Google Scholar 

  • Zhou, Y., et al.: Plasmon waveguide resonance sensor using an Au–MgF2 structure. Appl. Opt. 53(28), 6344–6350 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is funded by IIRG grant from University Malaya (IIRG005B-19IISS).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zakaria.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, R., Zainuddin, N.A.M., Ahmad Fahri, M.A.S. et al. Exploration of multi-metallic thin layer/MgF2 in side-polished optical fiber as long-range surface plasmons (LRSPs) alcohol sensor. Opt Quant Electron 54, 221 (2022). https://doi.org/10.1007/s11082-022-03614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03614-x

Keywords

Navigation