Skip to main content
Log in

Sensitivity enhancement of SPR sensor using Ni/ZnO nanocomposite assisted with graphene

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper the performance of surface plasmon resonance (SPR) biosensor in modified kretchmann configuration utilizing nanocomposite layer consisting of nickel and ZnO as plasmonic material is analyzed numerically using N-layered transfer matrix method. The performance parameters of proposed sensor are investigated in terms of sensitivity (S), detection accuracy (DA) and quality factor (QF) at the operating wavelength of 633 nm. Parameters such as the influence of refractive index of the coupling prism, the thickness of the nanocomposite layer, the constituent components of the nanocomposite layer and the number of the graphene layers over the nanocomposite layer are investigated and the optimal values are identified to achieve maximum sensitivity. The numerical results shows that upon suitable optimization of the above parameters, the proposed SPR sensor is found to exhibits sensitivity as high as 378.34°/RIU with quality factor (QF) as 39.78/RIU. Compared with existing similar type of SPR sensors, the proposed sensor exhibits higher sensitivity, lower FWHM and better quality factor which would make our design to have more applications in the field of biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajayan, P.M., Schadler, L.S., Braun, P.V.: Nanocomposite Science and Technology, II Polymer-Based and Polymer-Filled Nanocomposites, pp. 77–153 (2003)

  • Akimov, Y.A., Koh, W.S.: Resonant and non-resonant plasmon nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21, 235201 (2010)

    ADS  Google Scholar 

  • Akimov, Y.A., Ostrikov, K., Li, E.P.: Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4, 107–111 (2009a)

    Google Scholar 

  • Akimov, Y.A., Koh, W.B., Ostrikov, K.: Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt. Express 17, 10195–10205 (2009b)

    ADS  Google Scholar 

  • Akimov, Y.A., Koh, W.B., Sian, S.Y., Ren, S.: Nanoparticle-enhanced thin film solar cells: metallic or dielectric nano particles. Appl. Phys. Lett 96, 073111 (2010)

    ADS  Google Scholar 

  • Alagu Vibisha, G., Nayak, J.K., Maheswari, P., Priyadharsini, N., Nisha, A., Jaroszewicz, Z., Rajesh, K.B., Jha, R.: Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni. Opt. Commun. 463, 125337 (2020)

    Google Scholar 

  • Alexander, S.A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)

    Google Scholar 

  • Benaziez, S., Dibi, Z., Benaziez, N.: Reflectivity optimization of the SPR graphene sensor. Nanopages 13, 5–17 (2018)

    Google Scholar 

  • Bo, S., Di, L., Wenpeng, Q., Marcus, E., Chunhai, F., Haiping, F.: Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nano detection and identification. Chem. Phys. Chem. 11(3), 585–589 (2010)

    Google Scholar 

  • Chu, H.S., Ewe, W.B., Koh, W.S., Li, E.P.: Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain. Appl. Phys. Lett. 92, 103 (2008)

    Google Scholar 

  • Englebienne, P., Hoonacker, A.V., Verhas, M.: Surface plasmon resonance: principles, methods and applications in biochemical sciences. Spectroscopy 17, 255 (2003)

    Google Scholar 

  • Healy, D.A., Hayes, C.J., Leonard, P., McKenna, L., O’Kennedy, R.: Biosensor developments, application to prostate-specific antigen detection. Trends Biotechnol. 25, 125–131 (2007)

    Google Scholar 

  • Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)

    Google Scholar 

  • Kooyman, K.P.H.: Handbook of Surface Plasmon Resonance, vol. 2, pp. 15–34. Royal Society of Chemistry, London (2008)

    Google Scholar 

  • Kushwaha, A.S., Kumar, A., Kumar, R., Srivastava, S.K.: A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonics Nanostruct. Fundam. Appl. 31, 99–106 (2018)

    ADS  Google Scholar 

  • Lecaruyer, P., Canva, M., Rolland, J.: Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method. Appl. Opt 46, 2361–2369 (2007)

    ADS  Google Scholar 

  • Lee, K.L., Lee, C.W., Wang, W.S., Wei, P.K.: Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J. Biomed. Opt. 12, 044023 (2007)

    ADS  Google Scholar 

  • Lertvachirapaiboon, C., Baba, A., Ekgasit, S., Thammacharoen, C., Shinbo, K., Kato, K., Kaneko, F.: Gold nanoparticle synthesis used for sensor applications, In: IEEE Conference on Proceedings of ISEIM (2011)

  • Lin, C., Chen, S.: Design of high-performance Au–Ag dielectric-graphene based surface plasmon resonance biosensors using genetic algorithm. J. Appl. Phys. 125(11), 113101 (2019)

    ADS  Google Scholar 

  • Lin, Z., Jiang, L., Wu, L., Guo, J., Dai, X., Xiang, Y., Fan, D.: Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films. IEEE Photonics J. 8(6), 4803308 (2016)

    Google Scholar 

  • Liu, N., Wang, S., Cheng, Q., et al.: High sensitivity in Ni-based SPR sensor of blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01421-w

    Article  Google Scholar 

  • Maharana, P.K., Padhy, P., Jha, R.: On the field enhancement and performance of an ultra stable SPR biosensor based on graphene. IEEE Photonics Technol. Lett. 25, 2156–2159 (2013)

    ADS  Google Scholar 

  • Maharana, P.K., Jha, R., Padhy, P.: On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared. Sens. Actuators B 207, 117–122 (2015)

    Google Scholar 

  • Maurya, J.B., Prajapati, Y.K., Tripathi, R.: Effect of molybdenum disulfide layer on surface plasmon resonance biosensor for the detection of bacteria. Silicon 10, 245–256 (2018)

    Google Scholar 

  • Mishra, A.K., Mishra, S.K., Verma, R.K.: An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J. Phys. D Appl. Phys. 48/43, 435502 (2015)

    ADS  Google Scholar 

  • Mishra, A.K., Mishra, S.K., Verma, R.K.: Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance based fiber optic sensing. J. Phys. Chem. 120, 2893–2900 (2016)

    Google Scholar 

  • Nisha, A., Maheswari, P., Anbarasan, P.M., Rajesh, K.B., Jaroszewicz, Z.: Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt. Quant. Electron. 51, 1–12 (2019)

    Google Scholar 

  • Ollik, K., Lieder, M.: Review of the application of graphene-based coatings as anticorrosion layers. Coatings 10(9), 83 (2020). https://doi.org/10.3390/coatings10090883

    Article  Google Scholar 

  • Ouyang, Q., Zeng, S., Jiang, L., Hong, L., Xu, G., Dinh, X.Q., Qian, J., He, S., Qu, J., Coquet, P., Yong, K.T.: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 6, 28190 (2016)

    ADS  Google Scholar 

  • Pal, S., Verma, A., Raikwar, S., Prajapati, Y.K., Saini, J.P.: Detection of DNA hybridization using graphene coated black phosphorus surface plasmon resonance sensor. Appl. Phys. A 124, 394 (2018)

    ADS  Google Scholar 

  • Qiu, S.J., Zhou, Z., Feng, X., Xu, F., Lu, Y.Q.: Lead silicate fiber-based, refractive index- independent temperature sensor. J. Mod. Opt 60, 851–853 (2013)

    ADS  Google Scholar 

  • Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1998)

    Google Scholar 

  • Rahman, M.S., Hasan, M.R., Rikta, K.A., Anower, M.S.: A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt. Mater. 75, 567–573 (2018)

    ADS  Google Scholar 

  • Rani, M., Shukla, S., Sharma, N.K., Sajal, V.: Theoretical study of nanocomposite based fiber optic SPR sensor. Opt. Commun. 313, 303–314 (2014)

    ADS  Google Scholar 

  • Rothenhausler, B., Knoll, W.: Surface plasmon microscopy. Nature 332, 615–617 (1988)

    ADS  Google Scholar 

  • Shukla, S., Sharma, N.K., Sajal, V.: Theoretical study of surface plasmon resonance-based fiber optic sensor utilizing cobalt and nickel films. Gen. Appl. Phys. 46, 288–293 (2016)

    Google Scholar 

  • Singh, S., Mishra, S.K., Gupta, B.D.: Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sens. Actuators A 193, 136–140 (2013)

    Google Scholar 

  • Song, B., Li, D., Qi, W.P., Elstner, M., Fan, C.H., Fang, H.P.: Graphene on Au (111) a highly conductive material with excellent adsorption properties for high-resolution bio/nano detection and identification. Chem. Phys. Chem. 11, 585–589 (2010)

    Google Scholar 

  • Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nano structured plasmonic sensors. Chem. Rev 108, 494–521 (2008)

    Google Scholar 

  • Tiwari, K., Sharma, S.C., Hozhabri, N.: High performance surface plasmon sensors: Simulations and measurements. J. Appl. Phys. 118, 093105 (2015)

    ADS  Google Scholar 

  • Vahed, H., Nadri, C.: Sensitivity enhancement of SPR optical biosensor based on Graphene-Mos2 structure with nanocomposite layer. Opt. Mater. 88, 161–166 (2019)

    ADS  Google Scholar 

  • Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B 160, 623–631 (2011a)

    Google Scholar 

  • Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160, 623–631 (2011b)

    Google Scholar 

  • Verma, A., Prakash, A., Tripathi, R.: Performance analysis of graphene based surface plasmon resonance biosensors for detection of pesudomonas-like bacteria. Opt. Quantum Electron. 47, 1197–1205 (2015)

    Google Scholar 

  • Wang, L., Sun, Y., Wang, J., Wang, J., Yu, A., Zhang, H., Song, D.: Water-soluble ZnO–Au nanocomposite-based probe for enhanced protein detection in a SPR biosensor system. J. Colloid Interface Sci. 351, 392–397 (2010)

    ADS  Google Scholar 

  • Wu, L., Chu, H., Koh, W.B., Li, E.P.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18, 14395–14400 (2010)

    ADS  Google Scholar 

  • Xu, H., Wu, L., Dai, X., Gao, Y., Xiang, Y.: An ultra-high sensitivity surface plasmon resonance sensor based on graphene aluminum-graphene sandwich-like structure. J. Appl. Phys. 120, 053101 (2016). https://doi.org/10.1063/1.4959982

    Article  ADS  Google Scholar 

  • Yakesb, B.J., Deeds, J., White, K., Degrasse, S.L.: Evaluation of surface plasmon resonance biosensors for detection of tetrodotoxin in food matrices and comparison to analytical methods. J. Agric. Food Chem. 59, 839–846 (2011)

    Google Scholar 

  • Zeng, S., Hu, S., Xia, J., Anderson, T., Dinh, X.Q., Meng, X.M., Coquet, P., Yong, K.T.: Graphene-MoS2 hybrid nanostructure enhanced surface plasmon resonanace biosensors. Sens. Actuators B Chem. 207, 801–810 (2015)

    Google Scholar 

  • Zhao, J., Zhang, X.Y., Yonzon, C.R., Haes, A.J., Van Duyne, R.P.: Localized surface plasmon resonance biosensors. Nano Med. 1, 219–228 (2006)

    Google Scholar 

  • Zhao, X., Huang, T., Ping, P.S., Wu, X., Huang, P., Pan, J., Wu, Y., Cheng, Z.: Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18, 2056 (2018)

    ADS  Google Scholar 

  • Zheng, S., Zhu, Y.N., Krishnaswamy, S.: Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings. Sens. Actuators B 176, 264–274 (2013)

    Google Scholar 

  • Zheng, S., Masoud, G., Ou, J.P.: Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser. Sens. Actuators B 223, 324–332 (2016)

    Google Scholar 

  • Zhu, M., Du, Z., Yin, Z., Zhou, W., Liu, Z., Tsang, S.H., Toe, E.H.T.: Low-temperature in situ growth of graphene on metallic substrate and its application in anticorrosion. ACS Appl. Mater. Interfaces 8, 502–510 (2015a)

    Google Scholar 

  • Zhu, M., Wu, J., Du, Z., Tay, R.Y., Li, H., Ozyilmaz, B., Teo, E.H.T.A.: Wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications. Nanoscale 7, 14730–14737 (2015b)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Rajesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheswari, P., Subanya, S., Nisha, A. et al. Sensitivity enhancement of SPR sensor using Ni/ZnO nanocomposite assisted with graphene. Opt Quant Electron 53, 727 (2021). https://doi.org/10.1007/s11082-021-03379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03379-9

Keywords

Navigation