Skip to main content
Log in

New exact solutions of time conformable fractional Klein Kramer equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Klein Kramer equation (KKE) stands for the probability distribution function (PDF) that describes the diffusion of particles subjected an external force in the presence of friction. It is applicable in statistical and stochastic treatments of chemical dynamics, in particular the diffusive description of chemical reactions. Here, we are concerned with finding the exact solutions of the conformable fractional derivative (CFD) KKE. An approach is presented to transform linear partial differential equations (PDEs) to a set of first order PDEs. On the other hand the CFD is shown to be reduced to the classical one’s by using similarity transformations. Here, the objective of this work is to find the exact solutions of CFD-KKE. To this issue, the approach presented is applied. The solutions are found by implementing extended unified method. It is found that, the integrability condition is that the external force is constant. The numerical results of the solutions are calculated and the are shown graphically. Calculations are carried by MATHEMATICA 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aba Oud, M.A., Ali, A., Alrabaiah, H., Ullah, S., Khan, M.A., Islam, S.: A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load. Adv. Differ. Equ. 2021(1), 1–19 (2021)

    Article  MathSciNet  Google Scholar 

  • Abdel-Gawad, H.I., Biswas, A.: Multi-soliton solutions based on interactions of basic traveling waves with an applications to the non local Boussinesq equation. Acta Phys. Pol. B 47(4), 1101–1112 (2016)

    Article  ADS  Google Scholar 

  • Abdel-Gawad, H.I.: Towards a unified method for exact solutions of evolution equations. An application to reaction diffusion equations with finite memory transport. J. Stat. Phys. 147, 506–521 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Abdel-Gawad, H.I., El-Azab, N., Osman, M.: Exact solution of the space-dependent KdV equation by the extended unified method. JPSP 82, 044004 (2013)

    ADS  Google Scholar 

  • Abdel-Gawad, H.I., Tantawy, M., Abo-Elkhair, R.E.: On the extension of solutions of the real to complex KdV equation and a mechanism for the construction of rogue waves. Wave Random Complex 26, 397–406 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Anderson, J., Kim, E., Moradi, S.: A fractional Fokker–Planck model for anomalous diffusion. Phys. Plasmas 21(12), 122109 (2014)

    Article  ADS  Google Scholar 

  • Barkai, E., Silbey, R.J.: Fractional Klein–Kramer’s equation. J. Phys. Chem. B 104, 3866 (2000)

    Article  Google Scholar 

  • Bonyah, E., Khan, M.A., Okosun, K.O., Gómez-Aguilar, J.F.: Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with optimal control. Math. Biosci. 309, 1–11 (2019)

    Article  MathSciNet  Google Scholar 

  • Chaudhury, S., Kou, S.C., Cherayil, B.J.: Model of fluorescence indeterminacy in single enzymes. J. Phys. Chem. B 111, 2377 (2007)

    Article  Google Scholar 

  • Dieterich, P., Klages, R., Preuss, R., Schwab, A.: Anomalous dynamics of cell migration. Proc. Natl. Acad. Sci. USA 105(2), 459–463 (2008)

    Article  ADS  Google Scholar 

  • Golding, I., Cox, E.C.: Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006)

    Article  ADS  Google Scholar 

  • Gómez-Aguilar, J.F., Saad, K.M., Baleanu, D.: Fractional dynamics of an erbium-doped fiber laser model. Opt. Quant. Electron. 51, 316 (2019)

    Article  Google Scholar 

  • Khan, M.A., Atanganaa, A.: Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex. Eng. J. 59(4), 2379–2389 (2020)

    Article  Google Scholar 

  • Khan, M.A., Islam, S., Khan, S.A.: Mathematical modeling towards the dynamical interaction of leptospirosis. Appl. Math. Inf. Sci. 8(3), 1049 (2014)

    Article  Google Scholar 

  • Khan, M.A., Ullah, S., Okosun, K.O., Shah, K.: A fractional order pine wilt disease model with Caputo–Fabrizio derivative. Adv. Differ. Equ. 2018(1), 410 (2018)

    Article  MathSciNet  Google Scholar 

  • Khater, M.M.A., Jhangeer, A., Rezazadeh, H., et al.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quant. Electron. 53, 609 (2021)

    Article  Google Scholar 

  • Kotulski, M.: Asymptotic distributions of continuous-time random walks: a probabilistic approach. J. Stat. Phys. 81, 777 (1995)

    Article  ADS  Google Scholar 

  • Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  • Kwok, S.F.: Generalized Klein–Kramer’s equations. J. Chem. Phys. 137(23), 234102 (2012)

    Article  Google Scholar 

  • Kwok, S.F., Wang, K.G.: Generalized Klein Kramer’s equation: solution and application. J. Stat. Mech. Theory Exp. 2013, 9021 (2013)

    MathSciNet  Google Scholar 

  • Litvinenko, Y.E., Effenberger, F.: Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport. Astrophys. J. 796(2), 125 (2014)

    Article  ADS  Google Scholar 

  • Metzler, R.: Fractional Klein–Kramer’s equations: sub diffusive and super diffusive cases. In: Recent Advances in Broadband Dielectric Spectroscopy. Springer, Berlin (2013)

  • Metzler, R., Klafter, J.: Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion. Phys. Rev. E 61(6), 6308 (2000)

    Article  ADS  Google Scholar 

  • Metzler, R., Sokolov, I.M.: Super diffusive Klein–Kramer’s equation: normal and anomalous time evolution and Lévy walk moments. EPL (Europhys. Lett.) 58(4), 482 (2002)

    Article  ADS  Google Scholar 

  • Saad, K.M.: Fractal-fractional Brusselator chemical reaction. Chaos Solitons Fractals 150, 111087 (2021)

    Article  MathSciNet  Google Scholar 

  • Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos Interdiscip. J. Nonlinear Sci. 7(4), 753–764 (1997)

    Article  MathSciNet  Google Scholar 

  • Singh, H.: A reliable numerical algorithm for the fractional vibration equation. Chaos Solitons Fractal 103, 131–138 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Singh, H.: Analysis for fractional dynamics of Ebola virus model. Chaos Solitons Fractals 138, 109992 (2020a)

  • Singh, H.: Jacobi collocation method for the fractional advection-dispersion equation arising in porous media. Numer. Methods Partial Differ. Equ. (2020b)

  • Singh, H.: Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells. Chaos Solitons Fractals 146, 110868 (2021a)

  • Singh, H.: Chebyshev spectral method for solving a class of local and nonlocal elliptic boundary value problems. Int. J. Nonlinear Sci. Numer. Simul. (2021b)

  • Singh, H., Wazwaz, A.-M.: Computational method for reaction diffusion-model arising in a spherical catalyst. Int. J. Appl. Comput. Math. 7(3), 65 (2021)

    Article  MathSciNet  Google Scholar 

  • Sokolov, I.M.: Models of anomalous diffusion in crowded environments. Soft Matter 8, 9043 (2012)

    Article  ADS  Google Scholar 

  • Tawfik, A.M., Fichtner, H., Elhanbaly, A., Schlickeiser, R.: General solution of a fractional Parker diffusion–convection equation describing the super diffusive transport of energetic particles. Eur. Phys. J. Plus 133(6), 209 (2018)

    Article  Google Scholar 

  • Tawfik, A.M., Fichtner, H., Elhanbaly, A., Schlickeiser, R.: An analytical study of fractional Klein–Kramer’s approximations for describing anomalous diffusion of energetic particles. J. Stat. Phys. 174, 830–845 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Zambelli, S.: Chemical kinetics and diffusion approach: the history of the Klein–Kramers equation. Arch. Hist. Exact Sci. 64, 395–428 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Research Groups Program under Grant Number (R.G.P2./99/41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. Saad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alderremy, A.A., Abdel-Gawad, H.I., Saad, K.M. et al. New exact solutions of time conformable fractional Klein Kramer equation. Opt Quant Electron 53, 693 (2021). https://doi.org/10.1007/s11082-021-03343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03343-7

Keywords

Mathematics Subject Classification

Navigation