Skip to main content
Log in

Optical plasmonic star-shaped nanoprobes for intracellular sensing and imaging

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The gold nanostars (GNSs) with sharp branches have shown tunable strong localized surface plasmon resonance (LSPR) peak in the NIR region by varying the size and the shape of the branches which cause to use them for applications such as surface-enhanced Raman spectroscopy (SERS), intracellular imaging and sensing. In this paper, plasmonic nanoprobes based on the GNSs with different morphology have been designed and embedded in the human skin tissue as a surrounding media. The strong Raman scattering has been calculated for GNSs. Furthermore, the high refractive index sensitivity (\(RIS\)), the effective figure of merit (FOM) enhancement with minimum cellular damage in intracellular imaging, are observed. The \(RIS\) and \(FOM\) are found to be dependent on the shape and the size of the GNS and the dielectric constant of the surrounding medium. Our results briefly demonstrate the existence of electromagnetic hotspot in the sharp branches of the GNS with the high LSPR peak in the tissue diagnostic window. Moreover, we obtained the high \(RIS\) of 856 \(\left( {{\raise0.7ex\hbox{${nm}$} \!\mathord{\left/ {\vphantom {{nm} {RIU}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${RIU}$}}} \right)\), and a large \(FOM\) around 2.1 \(\left( {RIU^{ - 1} } \right)\) with the wide resonance spectra in comparison with previously presented nanoparticles. We present guideline for designing the specific nanostar based LSPR nanoprobe with high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alabastri, A., Tuccio, S., Giugni, A., Toma, A., Liberale, C., Das, G., et al.: Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature. Materials 6, 4879–4910 (2013)

    Article  ADS  Google Scholar 

  • Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  Google Scholar 

  • Becker, J., Trügler, A., Jakab, A., Hohenester, U., Sönnichsen, C.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161–167 (2010)

    Article  Google Scholar 

  • Boisselier, E., Astruc, D.: Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009)

    Article  Google Scholar 

  • Caracas, R., and Bobocioiu, E." "Theoretical modelling of Raman spectra," Applications of Raman Spectroscopy to Earth Sciences and Cultural Heritage (J. Dubessy, F. Rull & M.-C. Caumon, editors). EMU Notes in Mineralogy, 12, 2012

  • Chen, H., Kou, X., Yang, Z., Ni, W., Wang, J.: Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24, 5233–5237 (2008)

    Article  Google Scholar 

  • Cheng, L., Song, J., Yin, J., Duan, H.: Self-assembled plasmonic dimers of amphiphilic gold nanocrystals. J. Phys. Chem. Lett. 2, 2258–2262 (2011)

    Article  Google Scholar 

  • Chung, T., Lee, S.-Y., Song, E.Y., Chun, H., Lee, B.: Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11, 10907–10929 (2011)

    Article  ADS  Google Scholar 

  • De Jong, W.H., Borm, P.J.: Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133 (2008)

    Article  Google Scholar 

  • Ding, H., Lu, J.Q., Wooden, W.A., Kragel, P.J., Hu, X.-H.: Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys. Med. Biol. 51, 1479–1489 (2006)

    Article  Google Scholar 

  • Dykman, L., Khlebtsov, N.: Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012)

    Article  Google Scholar 

  • Etchegoin, P.G., Le Ru, E., Meyer, M.: An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006)

    Article  ADS  Google Scholar 

  • Fales, A.M., Yuan, H., Vo-Dinh, T.: Development of hybrid silver-coated gold nanostars for nonaggregated surface-enhanced Raman scattering. J. Phys. Chem. C 118, 3708–3715 (2014)

    Article  Google Scholar 

  • Fălămaş, A., Cîntă-Pînzaru, S., Dehelean, C., Krafft, C., Popp, J.: Raman and FT-IR imaging of in vivo damaged tissue induced by 7, 12-dimethylbenzanthracene (DMBA) in mouse models. Rom. J. Biophys 20, 1–11 (2010)

    Google Scholar 

  • Fălămăs, A., Dehelean, C., and Pânzaru, S.C.: "Raman and sers characterization of normal pathological skin. Studia Universitatis Babes-Bolyai, Chemia, 56 (2011)

  • Gandjbakhche, A.H.: Diffuse optical imaging and spectroscopy, in vivo. Comptes Rendus De L’académie Des Sciences-Series IV-Phys. 2, 1073–1089 (2001)

    ADS  Google Scholar 

  • Gao, Y., Chen, L., Dai, X., Song, R., Wang, B., Wang, Z.: A strong charge-transfer effect in surface-enhanced Raman scattering induced by valence electrons of actinide elements. RSC Adv. 5, 32198–32204 (2015)

    Article  ADS  Google Scholar 

  • Giordano, A.N., Morton, S.M., Jensen, L., Lear, B.J.: Direct test of the equivalency of dynamic IR and dynamic raman spectroscopies as techniques for observing ultrafast molecular dynamics. J. Phys. Chem. A 117, 2067–2074 (2013)

    Article  Google Scholar 

  • Golmohammadi, S., Etemadi, M.: Analysis of plasmonic gold nanostar arrays with the optimum sers enhancement factor on the human skin tissue. J. Appl. Spectrosc. 86, 925–933 (2019)

    Article  ADS  Google Scholar 

  • Guider, R., Gandolfi, D., Chalyan, T., Pasquardini, L., Samusenko, A., Pederzolli, C., et al.: Sensitivity and limit of detection of biosensors based on ring resonators. Sens. Bio-Sens. Res. 6, 99–102 (2015)

    Article  Google Scholar 

  • Hahn, M.A., Singh, A.K., Sharma, P., Brown, S.C., Moudgil, B.M.: Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem. 399, 3–27 (2011)

    Article  Google Scholar 

  • Hofmann, A., Schmiel, P., Stein, B., Graf, C.: Controlled formation of gold nanoparticle dimers using multivalent thiol ligands. Langmuir 27, 15165–15175 (2011)

    Article  Google Scholar 

  • Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A.: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)

    Article  Google Scholar 

  • Jalkanen, K.J., Nieminen, R., Bohr, J.: Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution. Vestn. Mosk. Univ. Khim 41, 4–7 (2000)

    Google Scholar 

  • Johnson, P.B., Christy, R.-W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Justino, C.I., Rocha-Santos, T.A., Duarte, A.C.: Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC, Trends Anal. Chem. 29, 1172–1183 (2010)

    Article  Google Scholar 

  • Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B-Condensed Phase 107, 668–677 (2003)

    Article  Google Scholar 

  • Khlebtsov, B., Khanadeev, V., Maksimova, I., Terentyuk, G., Khlebtsov, N.: Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol. Russ. 5, 454–468 (2010)

    Article  Google Scholar 

  • Khoury, C.G., Vo-Dinh, T.: Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J. Phys. Chem. C 112, 18849–18859 (2008)

    Article  Google Scholar 

  • Lee, J., Hua, B., Park, S., Ha, M., Lee, Y., Fan, Z., et al.: Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale 6, 616–623 (2014)

    Article  ADS  Google Scholar 

  • Lee, J.-H., Nam, J.-M., Jeon, K.-S., Lim, D.-K., Kim, H., Kwon, S., et al.: Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS Nano 6, 9574–9584 (2012)

    Article  Google Scholar 

  • Li, N., Zhao, P., Astruc, D.: Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53, 1756–1789 (2014)

    Article  Google Scholar 

  • Lister, T., Wright, P.A., Chappell, P.H.: Optical properties of human skin. J. Biomed. Opt. 17, 0909011–09090115 (2012)

    Article  Google Scholar 

  • Liu, M., Guyot-Sionnest, P.: Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 109, 22192–22200 (2005)

    Article  Google Scholar 

  • Liu, Y., Yuan, H., Kersey, F.R., Register, J.K., Parrott, M.C., Vo-Dinh, T.: Plasmonic gold nanostars for multi-modality sensing and diagnostics. Sensors 15, 3706–3720 (2015)

    Article  ADS  Google Scholar 

  • Lou, X.W.D., Archer, L.A., Yang, Z.: Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 20, 3987–4019 (2008)

    Article  Google Scholar 

  • Martí, A., Costero, A.M., Gaviña, P., Parra, M.: Selective colorimetric NO (g) detection based on the use of modified gold nanoparticles using click chemistry. Chem. Commun. 51, 3077–3079 (2015)

    Article  Google Scholar 

  • McFarland, A.D., Van Duyne, R.P.: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)

    Article  ADS  Google Scholar 

  • Melancon, M.P., Zhou, M., Li, C.: Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44, 947–956 (2011)

    Article  Google Scholar 

  • Meng, Q.-Q., Zhao, X., Lin, C.-Y., Chen, S.-J., Ding, Y.-C., Chen, Z.-Y.: Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors 17, 1846 (2017)

    Article  ADS  Google Scholar 

  • Mieszawska, A.J., Mulder, W.J., Fayad, Z.A., Cormode, D.P.: Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharm. 10, 831 (2013)

    Article  Google Scholar 

  • Nehl, C.L., Liao, H., Hafner, J.H.: Optical properties of star-shaped gold nanoparticles. Nano Lett. 6, 683–688 (2006)

    Article  ADS  Google Scholar 

  • Offermans, P., Schaafsma, M.C., Rodriguez, S.R., Zhang, Y., Crego-Calama, M., Brongersma, S.H., et al.: Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5, 5151–5157 (2011)

    Article  Google Scholar 

  • Otte, M.A., Sepulveda, B., Ni, W., Juste, J.P., Liz-Marzán, L.M., Lechuga, L.M.: Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano 4, 349–357 (2009)

    Article  Google Scholar 

  • Park, Y.I., Im, H., Weissleder, R., Lee, H.: Nanostar clustering improves the sensitivity of plasmonic assays. Bioconjug. Chem. 26, 1470–1474 (2015)

    Article  Google Scholar 

  • Pezzotti, G., Boffelli, M., Miyamori, D., Uemura, T., Marunaka, Y., Zhu, W., et al.: Raman spectroscopy of human skin: looking for a quantitative algorithm to reliably estimate human age. J. Biomed. Opt. 20, 065008 (2015)

    Article  ADS  Google Scholar 

  • Pylaev, T., Khanadeev, V., Khlebtsov, B., Dykman, L., Bogatyrev, V., Khlebtsov, N.: Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods. Nanotechnology 22, 285501 (2011)

    Article  Google Scholar 

  • Päivänranta, B., Merbold, H., Giannini, R., Büchi, L., Gorelick, S., David, C., et al.: High aspect ratio plasmonic nanostructures for sensing applications. ACS Nano 5, 6374–6382 (2011)

    Article  Google Scholar 

  • Rifat, A., Mahdiraji, G.A., Sua, Y., Shee, Y., Ahmed, R., Chow, D.M., et al.: Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon. Technol. Lett. 27, 1628–1631 (2015)

    Article  ADS  Google Scholar 

  • Romo-Herrera, J.M., Alvarez-Puebla, R.A., Liz-Marzán, L.M.: Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3, 1304–1315 (2011)

    Article  ADS  Google Scholar 

  • Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, L.M., et al.: Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587 (2008)

    Article  Google Scholar 

  • Thakor, A., Jokerst, J., Zavaleta, C., Massoud, T., Gambhir, S.: Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett. 11, 4029–4036 (2011)

    Article  ADS  Google Scholar 

  • Wang, G., Akiyama, Y., Takarada, T., Maeda, M.: Rapid non-crosslinking aggregation of DNA-Functionalized gold nanorods and nanotriangles for colorimetric single-nucleotide discrimination. Chem.–A Euro. J. 22, 258–263 (2016)

    Article  Google Scholar 

  • Yang, M., Yang, X., Huai, L.: Synthesis and characterizations of hollow spheres and nanospheres of Au. Appl. Phys. A Mater. Sci. Process. 92, 367–370 (2008)

    Article  ADS  Google Scholar 

  • Yang, P., Zheng, J., Xu, Y., Zhang, Q., Jiang, L.: Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv. Mater. 28, 10508–10517 (2016)

    Article  Google Scholar 

  • Yao, J., Yang, M., Duan, Y.: Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 114, 6130–6178 (2014)

    Article  Google Scholar 

  • Yarmolenko, P.S., Moon, E.J., Landon, C., Manzoor, A., Hochman, D.W., Viglianti, B.L., et al.: Thresholds for thermal damage to normal tissues: an update. Int. J. Hyperth. 27, 320–343 (2011)

    Article  Google Scholar 

  • Yockell-Lelièvre, H., Lussier, F., Masson, J.-F.: Influence of the particle shape and density of self-assembled gold nanoparticle sensors on lspr and sers. J. Phys. Chem. C 119, 28577–28585 (2015)

    Article  Google Scholar 

  • Yong Park, I., Im, H., Weissleder, R., Lee, H.: Nanostar clustering improves the sensitivity of plasmonic assays,". Bioconjugate Chem. 26, 1470–1474 (2015)

    Article  Google Scholar 

  • Yuan, H., Khoury, C.G., Hwang, H., Wilson, C.M., Grant, G.A., Vo-Dinh, T.: Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012)

    Article  ADS  Google Scholar 

  • Yuan, H., Register, J.K., Wang, H.-N., Fales, A.M., Liu, Y., Vo-Dinh, T.: Plasmonic nanoprobes for intracellular sensing and imaging. Anal. Bioanal. Chem. 405, 6165–6180 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Golmohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemadi, M., Golmohammadi, S., Akbarzadeh, A. et al. Optical plasmonic star-shaped nanoprobes for intracellular sensing and imaging. Opt Quant Electron 53, 688 (2021). https://doi.org/10.1007/s11082-021-03304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03304-0

Keywords

Navigation