Skip to main content
Log in

Study on abundant explicit wave solutions of the thin-film Ferro-electric materials equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

From point of view of two distinct various techniques accurate solutions for the thin-film ferroelectric materials equation which plays vital role in optics are implemented which represent haw utilized waves propagate through ferroelectric materials. The first one is the modified simple equation method which surrender to the balance rule and gives closed form analytical solution for all applicable problems while the second has personal profile named theas Riccati-Bernoulli Sub-ODE method which not surrender to the balance rule and has special effective properties in calculations. These methods can be used perfectly to achieve the exact solutions for different types of nonlinear problems arising in various branches of science. Via giving the appearing variables definite values, 2D and 3D- impressive graphs of some achieved solutions are drawled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Salam, E.A., Jazmati, M.S., Ahmad, H.: Geometrical study and solutions for family of burgers-like equation with fractional order space time. Alex. Eng. J. (2021). https://doi.org/10.1016/j.aej.2021.06.032

    Article  Google Scholar 

  • Ahmad, H., Seadawy, A.R., Ganie, A.H., Rashid, S., Khan, T.A., Abu-Zinadah, H.: Approximate numerical solutions for the nonlinear dispersive shallow water waves as the Fornberg-Whitham model equations. Result. Phys. 16, 103907 (2021). https://doi.org/10.1016/j.rinp.2021.103907

    Article  Google Scholar 

  • Ahmad, H., Alam, N., Omri, M.: New computational results for a prototype of an excitable system. Result. Phys. 11, 104666 (2021). https://doi.org/10.1016/j.rinp.2021.104666

    Article  Google Scholar 

  • Ahmad, I., Seadawy, A.R., Ahmad, H., Thounthong, P., Wang, F.: Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method. Int. J. Nonlinear Sci. Numer. Simul. (2021). https://doi.org/10.1515/ijnsns-2020-0166

    Article  Google Scholar 

  • Ahmad, I., Ahmad, H,, Inc, M., Rezazadeh, H., Akbar, M.A., Khater, M.M., Akinyemi, L., Jhangeer, A. Solution of fractional-order Korteweg-de Vries and Burgers’ equations utilizing local meshless method. J. Ocean Eng. Sci. 2021 (2021)

  • Akinyemi, L., Şenol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021a)

    Article  MathSciNet  Google Scholar 

  • Akinyemi, L., Şenol, M., Huseen, S.N.: Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. Adv. Diff. Equ. 2021(1), 1–27 (2021b)

    Article  MathSciNet  Google Scholar 

  • Akinyemi, L., Rezazadeh, H., Yao, S.W., Akbar, M.A., Khater, M.M., Jhangeer, A., Ahmad, H.: Nonlinear dispersion in parabolic law medium and its optical solitons. Result. Phys. 26, 104411 (2021)

  • Amin, R., Ahmad, H., Shah, K., Hafeez, M.B., Sumelka, W.: Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method. Chaos, Solitons Fractals 1(151), 111252 (2021). https://doi.org/10.1016/j.chaos.2021.111252

    Article  MathSciNet  Google Scholar 

  • Attia, R.A., Lu, D., Ak, T., Khater, M.M.: Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method. Mod. Phys. Lett. B 34(05), 2050044 (2020)

    Article  ADS  Google Scholar 

  • Bandyopadhyay, K., Ray, P.C., Gopalan, V.: An approach to theKlein-Gordon equation for adynamic study in ferroelectric materials. J. Phys. Condens. Matter 18, 4093 (2006)

    Article  ADS  Google Scholar 

  • Bekir, A., Zahran, E.H.M.: Bright and dark soliton solutions for the complex Kundu-Eckhaus equation. Optik Int. J. Light Electron Optic. 223, 165233 (2020)

  • Bekir, A., Zahran, E.H.: New visions of the soliton solutions to the modified nonlinear Schrodinger equation. Optik 166539 (2021)

  • Bekir, A., Shehata, M., Zahran, E.: New optical soliton solutions for the thin-film ferroelectric materials equation instead of the numerical solution; accepted for publication. J. Comput. Methods Diff. Equ. (2020)

  • Bekir, A., Shehata, M.S.M., Zahran, E. H. M.: Comparison between the new exact and numerical solutions of the Mikhailov-Novikov-Wang equation, accepted for publication. Numer. Method Partial Diff. Eq. J. (2021)

  • Bekir, A., Shehata, M.S.M., Zahran, E.H.M.: Comparison between the new exact and numerical solutions of the Mikhailov-Novikov-Wang equation, accepted for publication in the numerical method of partial differential equation journal (2021)

  • Bekir, A., Zahran, E.H.M.: Three distinct and impressive visions for the soliton solutions to the higher-order nonlinear Schrodinger equation. Optik. Int. J. Light Electron Optic. 228, 166157 (2021)

    Article  Google Scholar 

  • Bekir, A., Zahran, E.H.: Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach. Opt. Quant. Electron. 53(2), 1–11 (2021a)

    Article  Google Scholar 

  • Bekir, A., Zahran, E.: New vision for the soliton solutions to the complex Hirota-dynamical model. Phys. Scr. (2021b). https://doi.org/10.1088/1402-4896/abe889

    Article  Google Scholar 

  • Ghanbari, B.: On novel nondifferentiable exact solutions to local fractional Gardner’s equation using an effective technique. Math. Method. Appl. Sci. 44(6), 4673–4685 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Inc, M., Rada, L.: Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 9(2), 568–589 (2019)

    MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Nisar, K.S., Aldhaifallah, M.: Abundant solitary wave solutions to an extended nonlinear Schrodingers equation with conformable derivative using an efficient integration method. Adv. Diff. Equ. 2020(1), 1–25

  • Hashemi, M.S., Akgül, A.: Solitary wave solutions of time-space nonlinear fractional Schrödinger’s equation: two analytical approaches. J. Comput. Appl. Math. 339, 147–160 (2018)

    Article  MathSciNet  Google Scholar 

  • He, J.-H.: Exp-function method for fractional differential equations. Int. J. Nonlinear Sci. Numer. Simul. 14(6), 363–366 (2013). https://doi.org/10.1515/ijnsns-2011-0132

    Article  MathSciNet  MATH  Google Scholar 

  • He, J.H., El-Dib, Y.O.: Periodic property of the time-fractional Kundu-Mukherjee-Naskar equation. Result. Phys. 19, 103345 (2020)

    Article  Google Scholar 

  • He, J.H., Qie, N., HuiHe, C.H.: Solitary waves travelling along an unsmooth boundar. Result. Phys. 24, 104104 (2021a)

    Article  Google Scholar 

  • He, J.-H., Hou, W.-F., Qie, N., Gepreel, K.A., Shirazi, A.H., Sedighi, H.M.: Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. Facta Univ. Ser. Mech. Eng. 19(2), 199–208 (2021b). https://doi.org/10.22190/FUME201205002H

    Article  Google Scholar 

  • He, J.H.: Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation, Result Phys. 17, 103031

  • Houwe, A., Abbagari, S., Salathiel, Y., Inc, M., Doka, S.Y., Crépin, K.T., Baleanu, D.: Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations. Result. Phys. 103127 (2020)

  • Hubert, M.B., Justin, M., Kudryashov, N.A., Betchewe, G., Douvagai, D., Doka, S.Y.: Solitons in thin-film ferroelectric material. Physica Scripta 93(7) (2018)

  • Jhangeer, A., Hussain, A., Junaid-U-Rehman, M., Baleanu, D., & Riaz, M. B. (2021). Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation. Chaos, Soliton. Fractals, 143, 110578

  • Kamran, M., Bashir, Y., Farooq, A., Shahzad, A., Abd Allah, A.M., Alotaibi, H., Ahmad, H.: Study on the helicoidal flow through cylindrical annuli with prescribed shear stresses. Result. Phys. 1(23), 103993 (2021)

  • Leta, T.D., Liu, W., El Achab, A., Rezazadeh, H., Bekir, A.: Dynamical behavior of traveling wave solutions for a (2 + 1)-dimensional Bogoyavlenskii coupled system. Qualit. Theory Dyn. Syst. 20(1), 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  • Liu, C.X.: Periodic solution of fractal PHI-4 equation. Therm. Sci. 25(2), 1345–1350 (2021)

    Article  Google Scholar 

  • Lu, X., Li, H., Cao, W.: Landau expansion parameters for BaTiO3. J. Appl. Phys. 114, 224106 (2013)

  • Maha, S.M.S., Rezazadeh, H., Jawad, A.J.J., Zahran, E.H.M., Bekir, A.: Optical solitons to a perturbed Gerdjikov-Ivanov equation using two different techniques. Revista Mexicana De Física 67(050704), 1–15 (2021)

    Google Scholar 

  • Park, C., Khater, M.M., Attia, R.A., Alharbi, W., Alodhaibi, S.S.: An explicit plethora of solution for the fractional nonlinear model of the low-pass electrical transmission lines via Atangana-Baleanu derivative operator. Alex. Eng. J. 59(3), 1205–1214 (2020)

    Article  Google Scholar 

  • Parravano, G.: Ferroelectric transitions and heterogenous catalysis. J. Chem. Phys. 20(2), 342–343 (1952)

    Article  ADS  Google Scholar 

  • Rafiq, M., Noor, M.A., Farwa, S., Kamran, M., Saeed, F., Gepreel, K.A., Yao, S.W., Ahmad, H.: Series solution to fractional contact problem using Caputo’s derivative. Open Phys. 19(1), 402–412 (2021)

    Article  Google Scholar 

  • Rezazadeh, H., Younis, M., Eslami, M., Bilal, M., Younas, U.: New exact traveling wave solutions to the (2 + 1)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Natural Phenomena 16, 38 (2021)

    Article  Google Scholar 

  • Scott, J.F.: Ferroelectric memories. Springer. ISBN 978-3-540-66387-4 (2000)

  • Senol, M., Akinyemi, L., Ata, A., Iyiola, O.S.: Approximate and generalized solutions of conformable type Coudrey–Dodd–Gibbon–Sawada–Kotera equation. Int. J. Mod. Phys. B 35(02), 2150021 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Souleymanou, A., Kali, K., Rezazadeh, H., Eslami, M., Mirzazadeh, M., Korkmaz, A.: The propagation of waves in thin-film ferroelectric materials. Pramana-J. Phys. 93, 27 (2019)

    Article  ADS  Google Scholar 

  • Tian, Y., Liu, J.: A modified EXP-function method for fractional partial differential equations. Therm. Sci. 25(2), 1237–1241 (2021)

    Article  Google Scholar 

  • Yokus, A., Durur, H., Kaya, D., Ahmad, H., Nofal, T.A.: Numerical comparison of caputo and conformable derivatives of time fractional Burgers-Fisher equation. Results Phys. 8, 104247 (2021). https://doi.org/10.1016/j.rinp.2021.104247

    Article  Google Scholar 

  • Yu, J.F., Chun, H., Jing, Z.J., Huan, H.J.: A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar. Appl. Math. Model. 82, 437–448 (2020)

    Article  MathSciNet  Google Scholar 

  • Zahran, E.H., Bekir, A., Alotaibi, M.F., Omri, M., Ahmed, H.: New impressive behavior of the exact solutions to the Benjamin-Bona-Mahony-Burgers equation with dual power-law nonlinearity against its numerical solution. Result. Phys. 104730 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hijaz Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahran, E.H., Mirhosseini-Alizamini, S.M., Shehata, M.S.M. et al. Study on abundant explicit wave solutions of the thin-film Ferro-electric materials equation. Opt Quant Electron 54, 48 (2022). https://doi.org/10.1007/s11082-021-03296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03296-x

Keywords

Navigation