Skip to main content
Log in

Partially coherent vortex cosh-Gaussian beam and its paraxial propagation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, the propagation properties of a partially coherent vortex cosh-Gaussian beam (PCvChGB) have been investigated. Within the framework of the extended Huygens–Fresnel diffraction integral, an analytical formula for a PCvChGB propagating in a paraxial ABCD optical system is derived. Based on the obtained formula, the influences of the spatial coherence, decentered parameter and vortex charge on the propagation properties of a PCvChGB in free space are illustrated numerically and analyzed. The obtained results could be beneficial for applications of PCvChG beams in optical communications, remote sensing and atom optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, L., Begersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. a. 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  • Anguiano-Morales, M., Salas-Peimbert, D.P., Trujillo-Schiaffino, G., Corral-Martínez, L.F., Garduño-Wilches, I.: Generation of an asymmetric hollow-beam. Opt. Quant. Elect. 47(8), 2983–2991 (2015)

    Article  Google Scholar 

  • Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. Appl. 5, 313–319 (2020)

    Google Scholar 

  • Bishop, A.I., Nieminen, T.A., Heckenberg, N.R., Rubinsztein, H.: Optical microrhology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104–198107 (2004)

    Article  ADS  Google Scholar 

  • Cai, Y., Lu, X., Lin, Q.: Hollow Gaussian beam and its propagation. Opt. Lett. 28, 1084–1086 (2003)

    Article  ADS  Google Scholar 

  • Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  • Gao, X., Zhan, Q., Yun, M., Guo, H., Dong, X., Zhuang, S.: Focusing properties of spirally polarized hollow Gaussian beam. Opt. Quant. Elect. 42(14), 827–840 (2011)

    Article  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Product, 5th edn. Academic Press, New York (1994)

    MATH  Google Scholar 

  • Guo, L., Tang, Z., Wan, W.: Propagation of a four-petal Gaussian vortex beam through a paraxial ABCD optical system. Optik 125, 5542–5545 (2014)

    Article  ADS  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Intensity characteristics of double-half inverse Gaussian hollow beams through turbulent atmosphere. Opt. Quant. Elect. 52(4), 201–208 (2020a)

    Article  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Introduction of a new vortex cosine-hyperbolic-Gaussian beam and the study of its propagation properties in Fractional Fourier Transform optical system. Opt. Quant. Elect. 5, 296–302 (2020b)

    Article  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Propagation properties of vortex cosine-hyperbolic-Gaussian beams in strongly nonlocal nonlinear media. J. Quant. Spect. Radiat. Transf. 5, 107554–107561 (2021a)

    Article  Google Scholar 

  • Hricha, Z., El Halba, E.M., Lazrek, M., Belafhal, A.: Focusing properties and focal shift of a vortex cosine-hyperbolic Gaussian beam. Opt. Quant. Elect. 53(8), 449–465 (2021b)

    Article  Google Scholar 

  • Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence. Opt. Quant. Elect. 53(7), 383–398 (2021c)

    Article  Google Scholar 

  • Hricha, Z., Lazrek, M., El Halba, E., Belafhal, A.: Parametric characterization of vortex cosine-hyperbolic-Gaussian beams. Results Opt. 5, 100120–100127 (2021d)

    Article  Google Scholar 

  • Kotlyar, V.V., Kovalev, A.A., Porfirev, A.P.: Vortex Hermite-Gaussian laser beams. Opt. Lett. 40, 701–704 (2015)

    Article  ADS  Google Scholar 

  • Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y., Sasada, H.: Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 4713–4716 (1997)

    Article  ADS  Google Scholar 

  • Li, H.H., Wang, J.G., Tang, M.M., Li, X.Z.: Propagation properties of cosh-Airy beams. J. Mod. Opt. 65, 314–320 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Liang, C., Khosravi, R., Liang, X., Kacerovská, B., Monfared, Y.E.: Standard and elegant higher-order Laguerre-Gaussian correlated Schell-model beams. J. Opt. 21, 085607–085615 (2019)

    Article  ADS  Google Scholar 

  • Liu, H., Lü, Y., Xia, J., Pu, X., Zhang, L.: Flat-topped vortex hollow beam and its propagation properties. J. Opt. 17, 075606–075613 (2015)

    Article  ADS  Google Scholar 

  • Lukin, V.P., Konyaev, P.A., Sennikov, V.A.: Beam spreading of vortex beams propagating in turbulent atmosphere. Appl. Opt. 51, 84–87 (2012)

    Article  Google Scholar 

  • Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for special Functions of Mathematical Physics, 3rd edn. Springer, Berlin (1966)

    Book  Google Scholar 

  • Mandel, L., Wolf, E.: Optical coherence and quantum optics. Cambridge University Press, Cambridge, UK (1995)

    Book  Google Scholar 

  • Ni, Y., Zhou, G.: Propagation of a Lorentz-Gauss vortex beam through a paraxial ABCD optical system’. Opt. Commun. 291, 19–25 (2013)

    Article  ADS  Google Scholar 

  • Paterson, L., MacDonald, M.P., Arlt, J., Sibbett, W., Bryant, P.E., Dholakia, K.: Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001)

    Article  ADS  Google Scholar 

  • Ponomarenko, S.A.: A class of partially coherent beams carrying optical vortices. J. Opt. Soc. Am. A 18, 150–156 (2001)

    Article  ADS  Google Scholar 

  • Rubinsztein-Dunlop, H., Forbes, A., Berry, M.V., Dennis, M.R., Andrews, D.L., Mansuripur, M., Denz, C., Alpmann, C., Banzer, P., Bauer, T., Karimi, E., Marrucci, L., Padgett, M., Ritsch-Marte, M., Litchinitser, N.M., Bigelow, N.P., Rosales-Guzmán, C., Belmonte, A., Torres, J.P., Neely, T.W., Baker, M., Gordon, R., Stilgoe, A.B., Romero, J., White, A.G., Fickler, R., Willner, A.E., Xie, G., McMorran, B., Weiner, A.M.: Roadmap on structured light. J. Opt. 19, 013001–101351 (2017)

    Article  ADS  Google Scholar 

  • Torok, P., Munro, P.R.T.: The use of Gauss-Laguerre vector beams in STED microscopy. Opt. Exp. 12, 3605–3617 (2004)

    Article  ADS  Google Scholar 

  • Wang, Z., Lin, Q., Wang, Y.: Control of atomic rotation by elliptical hollow beam carrying zero angular momentum. Opt. Commun. 240, 357–362 (2004)

    Article  ADS  Google Scholar 

  • Wang, J., Yang, J. Y., Fazal, I. M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., Willner, A. E.: terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Phot. l6, 488–412 (2012)

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of Dark and Antidark Gaussian beams in turbulent atmosphere. Opt. Quant. Elect. 51(8), 255–264 (2019a)

    Article  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Transformation of double-half inverse Gaussian hollow beams into superposition of finite Airy beams using an optical Airy transform. Opt. Quant. Elect. 51(3), 64–74 (2019b)

    Article  Google Scholar 

  • Yu, W., Zhao, R., Deng, F., Huang, J., Chen, C., Yang, X., Zhao, Y., Deng, D.: Propagation of Airy Gaussian vortex beams in uniaxial crystals. Chin. Phys. B 25, 044201–044206 (2016)

    Article  ADS  Google Scholar 

  • Zeng, J., Lin, R., Liu, X., Zhao, C., Cai, Y.: Review on partially coherent vortex beams. Front. Optoelect. (2019). https://doi.org/10.1007/s12200-019-0901

    Article  Google Scholar 

  • Zhang, Y., Song, Y., Chen, Z., Ji, J., Shi, Z.: Virtual sources for a cosh-Gaussian beam. Opt. Lett. 32(3), 292–294 (2007)

    Article  ADS  Google Scholar 

  • Zhou, Y., Zhou, G.: Orbital angular momentum density of a hollow vortex-Gausssian beam. Prog. Electmag. Res. 38, 15–24 (2014)

    Article  Google Scholar 

  • Zhou, G., Cai, Y., Dai, C.: Hollow vortex Gaussian beams. Sci. Chin. Phys. Mech. Astron. 56, 896–903 (2013)

    Article  ADS  Google Scholar 

  • Zhu, X., Wu, G., Lü, B.: Propagation of elegant vortex Hermite-Gaussian beams in turbulent atmosphere. In: Proceeding of the SPIE 10158, Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage, 101580F-6(2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Hricha or A. Belafhal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The derivation process of Eq. (9) is presented in detail in following.

The cross-spectral density of a PCvChGB propagating in free space is given by Mandel and Wolf (1995), Collins (1970)

$$W\left( {\vec{r}_{1} ,\vec{r}_{2} ,z} \right) = \left( {\frac{k}{2\pi B}} \right)^{2} \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {W\left( {\vec{r}_{01} ,\vec{r}_{02} ,z = 0} \right)\exp \left[ {\frac{ik}{{2B}}\left\{ {A\left( {\vec{r}_{02}^{2} - \vec{r}_{01}^{2} } \right) - 2\left( {\vec{r}_{02} \vec{r}_{2} - \vec{r}_{01} \vec{r}_{1} } \right) + D\left( {\vec{r}_{2}^{2} - \vec{r}_{1}^{2} } \right)} \right\}} \right]dr_{01} dr_{02} } } .$$
(A1)

Recalling the following expansions (Gradshteyn and Ryzhik 1994)

$$\left( {x + iy} \right)^{M} = \sum\limits_{l = 0}^{M} {C_{l}^{M} } x^{l} \left( {iy} \right)^{M - l} ,$$
(A2)

where

$$C_{l}^{M} = {\kern 1pt} \frac{M!}{{l!\left( {M - l} \right){\kern 1pt} !}},$$
(A3)

the cross-spectral density can be rearranged as

$$W\left( {\vec{r}_{1} ,\vec{r}_{2} ,z} \right) = \left( {\frac{k}{2\pi B}} \right)^{2} \exp \left\{ {\frac{ikD}{{2B}}\left( {\vec{r}_{2}^{2} - \vec{r}_{1}^{2} } \right)} \right\}\sum\limits_{l = 0}^{M} {C_{l}^{M} \left( i \right)^{M - l} \sum\limits_{n = 0}^{M} {C_{n}^{M} \left( { - i} \right)^{M - n} } {\kern 1pt} } U_{l,n} \left( {x_{1} ,x_{2} } \right)U_{M - l,M - n} \left( {y_{1} ,y_{2} } \right),$$
(A4)

where \(U_{l,n} \left( {s_{1} ,s_{2} } \right)\) is the typical integral expression given by

$$\begin{aligned} U_{l,n} \left( {s_{1} ,s_{2} } \right) = & \int\limits_{ - \infty }^{ + \infty } {s_{01}^{l} \cosh \left( {\frac{{b\,s_{01} }}{{\omega_{0} }}} \right)\exp \left\{ { - \alpha^{ * } s_{01}^{2} + \frac{{ik\,s_{1} }}{B}s_{01} } \right\}} \\ & \;\; \times \left[ {\int\limits_{ - \infty }^{ + \infty } {s_{02}^{n} \cosh \,\left( {\frac{{b\,s_{02} }}{{\omega_{0} }}} \right)\exp \left\{ { - \alpha \,s_{02}^{2} + \left( {\frac{{s_{01} }}{{\sigma_{0}^{2} }} - \frac{{ik\,s_{2} }}{B}} \right)\,s_{02} } \right\}ds_{02} ,} } \right]\,ds_{01} , \\ \end{aligned}$$
(A5)

where s represents either x or y (hereafter), and

$$\alpha = \frac{1}{{\omega_{0}^{2} }} + \frac{1}{{2\sigma_{0}^{2} }} - \frac{ikA}{{2B}}.$$
(A6)

Using the definition of the cosh (.) function

$$\cosh \left( x \right) = \frac{{e^{x} + e^{ - x} }}{2},$$

and recalling the following integral equation (Belafhal et al. 2020)

$$\int\limits_{ - \infty }^{ + \infty } {x^{n} \exp \left( { - px^{2} + 2qx} \right)} dx = \sqrt {\frac{\pi }{p}} \,\exp \left( {\frac{{q^{2} }}{p}} \right)\left( {\frac{1}{2i\sqrt p }} \right)^{n} H_{n} \left( {\frac{iq}{{\sqrt p }}} \right),$$
(A7)

where \(H_{n} \left( {.{\kern 1pt} {\kern 1pt} } \right)\) is the Hermite polynomial of nth-order, Eq. (A5) can be expressed as

$$\begin{aligned} U_{l,n} \left( {s_{1} ,s_{2} } \right) = & \frac{1}{2}\sqrt {\frac{\pi }{\alpha }} \left( {\frac{1}{2i\sqrt \alpha }} \right)^{n} \int\limits_{ - \infty }^{ + \infty } {s_{01}^{l} \cosh \left( {\frac{{b\,s_{01} }}{{\omega_{0} }}} \right)\exp \left\{ { - \alpha^{ * } s_{01}^{2} + \frac{{ik\,s_{1} }}{B}s_{01} } \right\}} \\ & \;\; \times \left[ {\exp \left( {\frac{{q_{ + }^{2} \left( {s_{01} ,s_{2} } \right)}}{\alpha }} \right)H_{n} \left( {\frac{{iq_{ + } \left( {s_{01} ,s_{2} } \right)}}{\sqrt \alpha }} \right) + \exp \left( {\frac{{q_{ - }^{2} \left( {s_{01} ,s_{2} } \right)}}{\alpha }} \right)H_{n} \left( {\frac{{iq_{ - } \left( {s_{01} ,s_{2} } \right)}}{\sqrt \alpha }} \right)} \right]\,ds_{01} , \\ \end{aligned}$$
(A8)

where

$$q_{ \pm } \left( {s_{01} ,s_{2} } \right) = \frac{{s_{01} }}{{2\sigma_{0}^{2} }} - \frac{{iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }},$$
(A9)

then Eq. (A8) can be written as

$$U_{l,n} \left( {s_{1} ,s_{2} } \right) = \frac{1}{4}\sqrt {\frac{\pi }{\alpha }{\kern 1pt} {\kern 1pt} } \left( {\frac{1}{2i\sqrt \alpha }} \right)^{n} \left[ {F^{ + } \left( {s_{1} ,s_{2} } \right) + F^{ - } \left( {s_{1} ,s_{2} } \right) + G^{ + } \left( {s_{1} ,s_{2} } \right) + G^{ - } \left( {s_{1} ,s_{2} } \right)} \right]{\kern 1pt} ,$$
(A10)

where

$$F^{ \pm } \left( {s_{1} ,s_{2} } \right) = \int\limits_{ - \infty }^{ + \infty } {s_{01}^{l} \exp \left\{ { - \alpha^{ * } s_{01}^{2} + \left( {\frac{{iks_{1} }}{B} + \frac{b}{{\omega_{0} }}} \right)s_{01} } \right\}} \exp \left\{ {\frac{{q_{ \pm }^{2} \left( {s_{01} ,s_{2} } \right)}}{\alpha }} \right\}H_{n} \left( {\frac{{iq_{ \pm } \left( {s_{01} ,s_{2} } \right)}}{\sqrt \alpha }} \right)ds_{01} ,$$
(A11)

and

$$G^{ \pm } \left( {s_{1} ,s_{2} } \right) = \int\limits_{ - \infty }^{ + \infty } {s_{01}^{l} \exp \left\{ { - \alpha^{ * } s_{01}^{2} + \left( {\frac{{iks_{1} }}{B} - \frac{b}{{\omega_{0} }}} \right)s_{01} } \right\}} \exp \left\{ {\frac{{q_{ \pm }^{2} \left( {s_{01} ,s_{2} } \right)}}{\alpha }} \right\}H_{n} \left( {\frac{{iq_{ \pm } \left( {s_{01} ,s_{2} } \right)}}{\sqrt \alpha }} \right)ds_{01} {\kern 1pt} .$$
(A12)

Eqs. (A11) and (A12) can also be developed as

$$\begin{aligned} F^{ \pm } \left( {s_{1} ,s_{2} } \right) = & \exp \left\{ {\frac{1}{\alpha }\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)^{2} } \right\}\int\limits_{ - \infty }^{ + \infty } {s_{01}^{l} \exp \left\{ { - \alpha^{ * } s_{01}^{2} + \left( {\frac{{iks_{1} }}{B} + \frac{b}{{\omega_{0} }}} \right)s_{01} } \right\}} \\ & \;\;\exp \left\{ {\frac{1}{\alpha }\left( {\frac{{s_{01}^{2} }}{{4\sigma_{0}^{2} }} + \frac{1}{{\sigma_{0}^{2} }}\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)s_{01} } \right)} \right\}H_{n} \left( {\frac{i}{{2\sigma_{0}^{2} \sqrt \alpha }}s_{01} + \frac{i}{\sqrt \alpha }\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)} \right)ds_{01} , \\ \end{aligned}$$
(A13)

and

$$\begin{aligned} G^{ \pm } \left( {s_{1} ,s_{2} } \right) = & \exp \left\{ {\frac{1}{\alpha }\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)^{2} } \right\}\int\limits_{ - \infty }^{ + \infty } {s_{01}^{l} \exp \left\{ { - \alpha^{ * } s_{01}^{2} + \left( {\frac{{iks_{1} }}{B} - \frac{b}{{\omega_{0} }}} \right)s_{01} } \right\}} \\ & \;\;\;\exp \left\{ {\frac{1}{\alpha }\left( {\frac{{s_{01}^{2} }}{{4\sigma_{0}^{2} }} + \frac{1}{{\sigma_{0}^{2} }}\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)s_{01} } \right)} \right\}H_{n} \left( {\frac{i}{{2\sigma_{0}^{2} \sqrt \alpha }}s_{01} + \frac{i}{\sqrt \alpha }\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)} \right)ds_{01} . \\ \end{aligned}$$
(A14)

Now, by using the following addition formula of the Hermite polynomials (Magnus et al. 1966)

$$H_{n} \left( {x + y} \right) = \sum\limits_{j = 0}^{n} {C_{j}^{n} \left( {2x} \right)^{j} } H_{n - j} \left( y \right),$$
(A15)

we find the expressions of Eqs. (A13) and (A14)

$$\begin{aligned} F^{ \pm } \left( {s_{1} ,s_{2} } \right) = & \exp \left\{ {\frac{1}{\alpha }\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)^{2} } \right\}\sum\limits_{h = 0}^{n} {C_{h}^{n} } \left( {\frac{i}{{\sigma_{0}^{2} \sqrt \alpha }}} \right)^{h} H_{n - h} \left( {\frac{i}{\sqrt \alpha }\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)} \right) \\ & \;\;\;\int\limits_{ - \infty }^{ + \infty } {s_{01}^{l + h} \exp \left\{ { - \eta s_{01}^{2} + 2q_{1s}^{ \pm } s_{01} } \right\}} ds_{01} , \\ \end{aligned}$$
(A16)

and

$$\begin{aligned} G^{ \pm } \left( {s_{1} ,s_{2} } \right) = & \exp \left\{ {\frac{1}{\alpha }\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)^{2} } \right\}\sum\limits_{h = 0}^{n} {C_{h}^{n} } \left( {\frac{i}{{\sigma_{0}^{2} \sqrt \alpha }}} \right)^{h} H_{n - h} \left( {\frac{i}{\sqrt \alpha }\left( {\frac{{ - iks_{2} }}{2B} \pm \frac{b}{{2\omega_{0} }}} \right)} \right) \\ & \;\;\int\limits_{ - \infty }^{ + \infty } {s_{01}^{l + h} \exp \left\{ { - \eta s_{01}^{2} + 2q_{2s}^{ \pm } s_{01} } \right\}} ds_{01} , \\ \end{aligned}$$
(A17)

and then Eq. (A10) can be written as

$$U_{l,n} \left( {s_{1} ,s_{2} } \right) = \frac{1}{4}\sqrt {\frac{\pi }{\alpha }{\kern 1pt} {\kern 1pt} } \left( {\frac{1}{2i\sqrt \alpha }} \right)^{n} \left[ \begin{gathered} \left\{ \begin{gathered} \exp \left\{ {\frac{1}{\alpha }\left( {\frac{{ - iks_{2} }}{2B} + \frac{b}{{2\omega_{0} }}} \right)^{2} } \right\}\sum\limits_{h = 0}^{n} {C_{h}^{n} } \left( {\frac{i}{{\sigma_{0}^{2} \sqrt \alpha }}} \right)^{h} H_{n - h} \left( {\frac{i}{\sqrt \alpha }\left( {\frac{{ - iks_{2} }}{2B} + \frac{b}{{2\omega_{0} }}} \right)} \right) \hfill \\ \times \left( {\int\limits_{ - \infty }^{ + \infty } {s_{01}^{l + h} \exp \left\{ { - \eta s_{01}^{2} + 2q_{1s}^{ + } s_{01} } \right\}} ds_{01} + \int\limits_{ - \infty }^{ + \infty } {s_{01}^{l + h} \exp \left\{ { - \eta s_{01}^{2} + 2q_{2s}^{ + } s_{01} } \right\}} ds_{01} } \right) \hfill \\ \end{gathered} \right\} \hfill \\ + \left\{ \begin{gathered} \exp \left\{ {\frac{1}{\alpha }\left( {\frac{{iks_{2} }}{2B} + \frac{b}{{2\omega_{0} }}} \right)^{2} } \right\}\sum\limits_{t = 0}^{n} {C_{t}^{n} } \left( {\frac{i}{{\sigma_{0}^{2} \sqrt \alpha }}} \right)^{t} H_{n - t} \left( {\frac{ - i}{{\sqrt \alpha }}\left( {\frac{{iks_{2} }}{2B} + \frac{b}{{2\omega_{0} }}} \right)} \right) \hfill \\ \times \left( {\int\limits_{ - \infty }^{ + \infty } {s_{01}^{l + t} \exp \left\{ { - \eta s_{01}^{2} + 2q_{1s}^{ - } s_{01} } \right\}} ds_{01} + \int\limits_{ - \infty }^{ + \infty } {s_{01}^{l + t} \exp \left\{ { - \eta s_{01}^{2} + 2q_{2s}^{ - } s_{01} } \right\}} ds_{01} } \right) \hfill \\ \end{gathered} \right\} \hfill \\ \end{gathered} \right]{\kern 1pt} ,$$
(A18)

By applying again the integral Eq. (A7), we get

$$\begin{aligned} U_{l,n} \left( {s_{1} ,s_{2} } \right) = & \frac{1}{4}\sqrt {\frac{\pi }{\alpha }{\kern 1pt} {\kern 1pt} } \sqrt {\frac{\pi }{\eta }{\kern 1pt} {\kern 1pt} } \left( {\frac{1}{2i\sqrt \alpha }} \right)^{n} \exp \left\{ {\frac{ikD}{{2B}}\left( {s_{2}^{2} - s_{1}^{2} } \right)} \right\} \\ & \;\;\;\;\left\{ \begin{gathered} \exp \left\{ {\frac{1}{4\alpha }\left( {\frac{b}{{\omega_{0} }} - \frac{{iks_{2} }}{B}} \right)^{2} } \right\}\sum\limits_{h = 0}^{n} {C_{h}^{n} \left( {\frac{i}{{\sigma_{0}^{2} \sqrt \alpha }}} \right)}^{h} \left( {\frac{1}{2i\sqrt \eta }} \right)^{l + h} H_{n - h} \left( {\frac{i}{2\sqrt \alpha }\left( {\frac{b}{{\omega_{0} }} - \frac{{iks_{2} }}{B}} \right)} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \times \left[ {\exp \left\{ {\frac{{\left( {q_{1s}^{ + } } \right)^{2} }}{\eta }} \right\}H_{l + h} \left( {\frac{{iq_{1s}^{ + } }}{\sqrt \eta }} \right) + \exp \left\{ {\frac{{\left( {q_{2s}^{ + } } \right)^{2} }}{\eta }} \right\}H_{l + h} \left( {\frac{{iq_{2s}^{ + } }}{\sqrt \eta }} \right)} \right] \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \exp \left\{ {\frac{1}{4\alpha }\left( {\frac{b}{{\omega_{0} }} + \frac{{iks_{2} }}{B}} \right)^{2} } \right\}\sum\limits_{t = 0}^{n} {C_{t}^{n} \left( {\frac{i}{{\sigma_{0}^{2} \sqrt \alpha }}} \right)}^{t} \left( {\frac{1}{2i\sqrt \eta }} \right)^{l + t} H_{n - t} \left( {\frac{ - i}{{2\sqrt \alpha }}\left( {\frac{b}{{\omega_{0} }} + \frac{{iks_{2} }}{B}} \right)} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \times \left[ {\exp \left\{ {\frac{{\left( {q_{1s}^{ - } } \right)^{2} }}{\eta }} \right\}H_{l + t} \left( {\frac{{iq_{1s}^{ - } }}{\sqrt \eta }} \right) + \exp \left\{ {\frac{{\left( {q_{2s}^{ - } } \right)^{2} }}{\eta }} \right\}H_{l + t} \left( {\frac{{iq_{2s}^{ - } }}{\sqrt \eta }} \right)} \right] \hfill \\ \end{gathered} \right\}, \\ \end{aligned}$$
(A19)

with

$$\eta = \alpha^{ * } - \frac{1}{{4\alpha \sigma_{0}^{4} }},$$
(A20)
$$q_{1s}^{ \pm } = \left( {\frac{{iks_{1} }}{2B} + \frac{b}{{2\omega_{0} }}} \right) + \frac{1}{{4\alpha \sigma_{0}^{2} }}\left( {\frac{{ - iks_{2} }}{B} \pm \frac{b}{{\omega_{0} }}} \right),$$
(A21)

and

$$q_{2s}^{ \pm } = \left( {\frac{{iks_{1} }}{2B} - \frac{b}{{2\omega_{0} }}} \right) + \frac{1}{{4\alpha \sigma_{0}^{2} }}\left( {\frac{{ - iks_{2} }}{B} \pm \frac{b}{{\omega_{0} }}} \right).$$
(A22)

After the substitution of Eq. (A18) into Eq. (A4), the cross-spectral density of a PCvChGB propagating through a paraxial optical system is obtained as

$$\begin{aligned} W\left( {\vec{r}_{1} ,\vec{r}_{2} ,z} \right) = & \frac{1}{16}\frac{1}{\alpha \eta }\left( \frac{k}{2z} \right)^{2} \left( {\frac{1}{2i\sqrt \alpha }} \right)^{M} \exp \left\{ {\frac{ikD}{{2B}}\left( {x_{2}^{2} - x_{1}^{2} + y_{2}^{2} - y_{1}^{2} } \right)} \right\} \\ & \;\; \times \sum\limits_{l = 0}^{M} {\sum\limits_{n = 0}^{M} {C_{l}^{M} C_{n}^{M} \left( i \right)^{n - l} {\rm P}_{l,n} \left( {x_{1} ,x_{2} } \right)\,{\rm P}_{M - l,M - n} \left( {y_{1} ,y_{2} } \right)} } , \\ \end{aligned}$$
(A23)

where

$$\begin{aligned} {\rm P}_{l,n} \left( {s_{1} ,s_{2} } \right) = & \exp \left\{ {\frac{1}{4\alpha }\left( {\frac{b}{{\omega_{0} }} - \frac{{iks_{2} }}{B}} \right)^{2} } \right\}\sum\limits_{h = 0}^{n} {C_{h}^{n} \left( {\frac{i}{{\sigma_{0}^{2} \sqrt \alpha }}} \right)}^{h} \left( {\frac{1}{2i\sqrt \eta }} \right)^{l + h} H_{n - h} \left( {\frac{i}{2\sqrt \alpha }\left( {\frac{b}{{\omega_{0} }} - \frac{{iks_{2} }}{B}} \right)} \right) \\ & \;\; \times \left[ {\exp \left\{ {\frac{{\left( {q_{1s}^{ + } } \right)^{2} }}{\eta }} \right\}H_{l + h} \left( {\frac{{iq_{1s}^{ + } }}{\sqrt \eta }} \right) + \exp \left\{ {\frac{{\left( {q_{2s}^{ + } } \right)^{2} }}{\eta }} \right\}H_{l + h} \left( {\frac{{iq_{2s}^{ + } }}{\sqrt \eta }} \right)} \right] \\ & \;\; + \exp \left\{ {\frac{1}{4\alpha }\left( {\frac{b}{{\omega_{0} }} + \frac{{iks_{2} }}{B}} \right)^{2} } \right\}\sum\limits_{t = 0}^{n} {C_{t}^{n} \left( {\frac{i}{{\sigma_{0}^{2} \sqrt \alpha }}} \right)}^{t} \left( {\frac{1}{2i\sqrt \eta }} \right)^{l + t} H_{n - t} \left( {\frac{ - i}{{2\sqrt \alpha }}\left( {\frac{b}{{\omega_{0} }} + \frac{{iks_{2} }}{B}} \right)} \right) \\ & \;\; \times \left[ {\exp \left\{ {\frac{{\left( {q_{1s}^{ - } } \right)^{2} }}{\eta }} \right\}H_{l + t} \left( {\frac{{iq_{1s}^{ - } }}{\sqrt \eta }} \right) + \exp \left\{ {\frac{{\left( {q_{2s}^{ - } } \right)^{2} }}{\eta }} \right\}H_{l + t} \left( {\frac{{iq_{2s}^{ - } }}{\sqrt \eta }} \right)} \right]{\kern 1pt} . \\ \end{aligned}$$
(A24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazrek, M., Hricha, Z. & Belafhal, A. Partially coherent vortex cosh-Gaussian beam and its paraxial propagation. Opt Quant Electron 53, 694 (2021). https://doi.org/10.1007/s11082-021-03295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03295-y

Keywords

Navigation