Skip to main content
Log in

Electron-LO-phonon intrasubband scattering rates in a hollow cylinder under the influence of a uniform axial applied magnetic field

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Scattering rates arising from the interactions of electrons with bulk longitudinal optical (LO) phonon modes in a hollow cylinder are calculated as functions of the inner radius and the uniform axial applied magnetic field. Now, the specific nature of electron-phonon interactions mainly depends on the character of the energy spectrum of electrons. As is well known, in cylindrical quantum wires, the application of a parallel magnetic field lifts the double degeneracy of the non-zero azimuthal quantum number states; \(m \not = 0\); irrespective of all electron’s radial quantum number l states. In fact, this Zeeman splitting is such that the \(m < 0\) electron’s energy subbands initially decrease with the increase of the parallel applied magnetic field. In a solid cylinder, the lowest-order; {\(l = 1;\,m = 0\)} subband is always the ground state. In a hollow cylinder, however, as the axial applied magnetic field is increased, the electron’s energy subbands take turns at becoming the ground state; following the sequence \(\lbrace m=0,-1,-2...~ -N\rbrace\) of azimuthal quantum numbers. Furthermore, in a hollow cylinder, in general, the electron’s energy separations between any two subbands are less than the LO phonon energy except for exceptionally high magnetic fields, and some highest-order quantum number states. In view of this, the discussion of the energy relaxation here is focused mainly on intrasubband scattering of electrons and only within the lowest-order {\(l = 1;\,m = 0\)} electron’s energy subband. The intrasubband scattering rates are found to be characterized by shallow minima in their variations with the inner radius, again, for a fixed outer radius. This feature is a consequence of a balance between two seemingly conflicting effects of the electron’s confinement by the inner and outer walls of the hollow cylinder. First; increased confinement of the charge carriers generally leads to the enhancement of the rates. Second; the presence of a hole in a hollow cylinder leads to a significant suppression of the scattering rates. The intrasubband scattering rates also show a somewhat parabolic increase in their variations with the applied magnetic field; an increase which is more pronounced in a relatively thick hollow cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Alcalde, A., Weber, G.: Scattering rates due to electron-phonon interaction in cds1-xsex quantum dots. Semicond. Sci. Technol. 15, 1082–1086 (2000)

    Article  ADS  Google Scholar 

  • Badran, E., Ulloa, S.: Frequency-dependent magnetotransport and particle dynamics in magnetic modulation systems. Phys. Rev. B 59, 2824–2832 (1999)

    Article  ADS  Google Scholar 

  • Bai, X.-F., Zhao, Y.-W., Yin, H.-W., Eerdunchaolu: Influence of the electromagnetic field on the transition of a two-level system in a gaussian confinement potential with lo phonon and of thickness effects. Opt. Quant. Electron. 51, 114 (2019)

    Article  Google Scholar 

  • Beenakker, C., van Houten, H., Staring, A.: Influence of coulomb repulsion on the aharonov-bohm effect in a quantum dot. Phys. Rev. B 44, 1657–1662 (1991)

    Article  ADS  Google Scholar 

  • Beretta, S., Bosi, M., Seravalli, L., Musayeva, N., Ferrari, C.: Orientation of germanium nanowires on germanium and silicon substrates for nanodevices. Mater. Today-Proc. 20, 30–36 (2020)

    Article  Google Scholar 

  • Bienfait, A., Satzinger, K.J., Zhong, Y.P., Chang, H.-S., Chou, M.-H., Conner, C.R., Dumur, E., Grebel, J., Peairs, G.A., Povey, R.G., Cleland, A.N.: Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019)

    Article  ADS  Google Scholar 

  • Dat, N.N., Hai, L.T.: Lo-phonon-limited electron mobility in a core-shell polar semiconductor quantum wire. Brazilian J. Phys. 49, 628–635 (2019)

    Article  ADS  Google Scholar 

  • Ding, Q., Zhang, X., Li, L., Lou, X., Xu, J., Zhou, P., Yan, M.: Temperature dependent photoluminescence of composition tunable znxaginse quantum dots and temperature sensor application. Opt. Express 25(16), 19065–19076 (2017)

    Article  ADS  Google Scholar 

  • Dongre, B., Carrete, J., Wen, S., Ma, J., Li, W., Mingo, N., Madsen, G.K.H.: Combined treatment of phonon scattering by electrons and point defects explains the thermal conductivity reduction in highly-doped si. J. Mater. Chem. A 8, 1273–1278 (2020)

    Article  Google Scholar 

  • Feng, T., Ruan, X.: Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons. Phys. Rev. B 97, 045202 (2018)

    Article  ADS  Google Scholar 

  • Filikhin, I., V.M., S., Vlahovic, B.: Electron spectral properties of the inas/gaas quantum ring. Physica E 33, 349–354 (2006)

  • Fotue, A.J., Kenfack, S.C., Issofa, N., Tiotsop, M., Djemmo, M.P.T., Wirngo, A.V., Fotsin, H., Fai, L.C.: Decoherence of polaron in asymmetric quantum dot qubit under an electromagnetic field. Am. J. Modern Phys. 4(3), 138–148 (2015)

    Article  Google Scholar 

  • Fröhlich, H.: Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954)

    Article  ADS  MATH  Google Scholar 

  • Fu, X., Peng, F., Lee, J., Yang, Q., Zhang, F., Xiong, M., Kong, G., Meng, H.-M., Ke, G., Zhang, X.-B.: Aptamer-functionalized dna nanostructures for biological applications. Top. Curr. Chem. 378(21), 1–43 (2020)

    Google Scholar 

  • Garg, J., Sellers, I.R.: Phonon linewidths in inas/alsb superlattices derived from first-principles-application towards quantum well hot carrier solar cells. Semicond. Sci. Technol. 35, 044001 (2020)

    Article  ADS  Google Scholar 

  • Goldberger, J., He, R., Zhang, Y., SLee, Yan, H., Choi, H.-J., and Yang, P.: Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003)

  • Hai, G., Peeters, F., Devreese, J.: Electron optical-phonon coupling in \(gaas/al_{x}ga_{1-x}as\) quantum wells due to interface, slab, and half-space modes. Phys. Rev. B 48, 4666-4674 (1993)

    Article  ADS  Google Scholar 

  • He, F., Walker, E.S., Zhou, Y., Muschinske, S.E., Bank, S.R., Wang, Y.: Quantum confinement of coherent acoustic phonons in transferred single-crystalline bismuth nanofilms. Appl. Phys. Lett. 116, 263101 (2020)

    Article  ADS  Google Scholar 

  • Hien, N.D., Dinh, L., Phong, T.C.: Influence of phonon confinement on optically detected elecctrophonon resonance linewidth in parabolic quantum wires. Hue Univ. Jo. Sci. Nat. Sci. 126(1B), 5–12 (2017)

    Google Scholar 

  • Khalef, W.K., Aljubouri, A.A., Faisal, A.D.: Photo detector fabrication based zno nanostructure on silicon substrate. Opt. Quant. Electron. 52, 334 (2020)

    Article  Google Scholar 

  • Khordad, R., Ghanbari, A.: Effect of phonons on optical properties of rbcl quantum pseudodot qubits. Opt. Quant. Electron. 49, 76 (2017)

  • Kim, C., Olendski, O.: Landau levels and persistent currents in nonuniform magnetic fields. Phys. Rev. B 53, 12917 (1996)

    Article  ADS  Google Scholar 

  • Kornich, V., Vavilov, M.G., Frisen, M., Coppersmith, S.N.: Phonon-induced decoherence of a charge quadrupole qubit. New J. Phys. 20, 103048 (2018)

    Article  ADS  Google Scholar 

  • Leão, S., Hipólito, O., Peeters, F.: Inter and intrasubband transitions via lo phonons in quantum wires. Superlattices Microstruct. 13, 37–40 (1993)

    Article  ADS  Google Scholar 

  • Liang, X., Dong, R., Ho, J.C.: Self-assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications. Adv. Mater. Technol. 4(1800541), 1–9 (2019)

    ADS  Google Scholar 

  • Masale, M.: Oscillator strengths for optical transitions near a cylindrical cavity. Physica B 291(3–4), 256–265 (2000)

    Article  ADS  Google Scholar 

  • Masale, M.: Dependence of the electron-lo-phonon intrasubband scattering rates near a cylindrical cavity on the axial applied magnetic field. Semicond. Sci. Technol. 7, 661–665 (2003)

    Article  ADS  Google Scholar 

  • Masale, M.: Single-electron states near a current-carrying core. Physica B 344, 284–291 (2004)

    Article  ADS  Google Scholar 

  • Masale, M.: Electron-lo-phonon scattering near a current-carrying core. Superlattices Microstruct. 43, 269–277 (2008)

    Article  ADS  Google Scholar 

  • Masale, M., Constantinou, N.: Electron-lo-phonon scattering rates in a cylindrical quantum wire with an axial magnetic field: Analytic results. Phys. Rev B 48, 11128–11134 (1993)

    Article  ADS  Google Scholar 

  • Masale, M., Constantinou, N., Tilley, D.: Single-electron energy subbands of a hollow cylinder in an axial magnetic field. Phys. Rev B 46, 15432–15437 (1992)

    Article  ADS  Google Scholar 

  • Mirlin, D., Perel, V.: Spectroscopy of Nonequilibrium Electrons and Phonons. North-Holland, Amsterdam (1992)

    Google Scholar 

  • Mori, N., Ando, T.: Electron-optical-phonon interaction in single and double heterostructures. Phys. Rev B 40, 6175–6188 (1989)

    Article  ADS  Google Scholar 

  • Nishiguchi, N., Wybourne, M.N.: Phonon modes in a möbius band. J. Phys. Commun. 2, 085002 (2018)

    Article  Google Scholar 

  • Peeters, F., De Boeck, J.: Handbook of Nanostructured Materials and Technology. Academic, New York (1999)

    Google Scholar 

  • Purkayastha, A., Guarnieri, G., Mitchson, M.T., Filip, R., Goold, J.: Tunable phonon-induced steady-state coherence in a double-quantum-dot charge qubit. Quant. Inf. 6, 27 (2020)

    Article  Google Scholar 

  • Quoc, K.D., Dinh, H.N.: Influence of confined phonon for the different models in gaas quantum wells on the optically detected electrophonon resonance linewidth. Opt. Quant. Electron. 51, 116 (2019)

    Article  Google Scholar 

  • Register, L.: Microscopic basis for a sum rule for polar-optical-phonon scattering of carriers in heterostructures. Phys. Rev B 45, 8756–8759 (1992)

    Article  ADS  Google Scholar 

  • Reijniers, J., Peeters, F., Matulis, A.: Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas. Phys. Rev. B 64, 245314 (2001)

    Article  ADS  Google Scholar 

  • Rosen, Y.J., Horsley, M.A., Harrison, S.E., Holland, E.T., Chang, A.S., Bond, T., DuBois, J.L.: Protecting superconducting qubits from phonon mediated decay. Appl. Phys. Lett. 114, 202601 (2019)

    Article  ADS  Google Scholar 

  • Rücker, H., Molinari, E., Lugli, P.: Microscopic calculation of the electron-phonon interaction in quantum wells. Phys. Rev. B 45, 6747–6756 (1992)

    Article  ADS  Google Scholar 

  • Saeed, K., Khan, I.: Carbon nanotubes-properties and applications: a review. Carbon Lett. 14(3), 131–144 (2013)

    Article  Google Scholar 

  • Sakaki, H.: Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures. Jpn. J. Appl. Phys. 19, L735–L738 (1980)

    Article  ADS  Google Scholar 

  • Santos, D., Jr., Qu, F., Alcalde, A.M., Morais, P.: Influence of the quantum dot shape on the determination of the electronic structure and electron decoherence. Physica E 26, 331–336 (2005)

    Article  ADS  Google Scholar 

  • Schlesinger, Z., J.M.C., H., Allen Jr., S. J.: Subband-landau-level coupling in a two-dimensional electron gas. Phys. Rev. Lett. 50, 2098–2101 (1983)

  • Schumacher, K., Collings, D., Phillips, R., Ritchie, D., Weber, G., Schulman, J., Ploog, K.: Inter- and intrasubband relaxation times in \(gaas-al_{0.35}ga_{0.65}\,{as}\) quantum wells measured by femtosecond time-resolved differential transmission. Semicond. Sci. Technol. 11, 1173–1177 (1996)

  • Talbi, A., El Haouari, M., Nouneh, K., Pérez, L.M., Tiutiunnyk, A., Laroze, D., Courel, M., Mora-Ramos, M.E., Feddi, E.: Lo-phonons and dielectric polarization effects on the electronic properties of doped gan/inn spherical core/shell quantum dots in a nonparabolic band model. Applied Physics A 127, 30 (2021)

    Article  Google Scholar 

  • Tiotsop, M., Fotue, A.J., Fotsin, H.B., Fai, L.C.: Application of entropies to the study of the decoherence of magnetopolaron in 0-d nanosystem. Opt. Quant. Elect. 50, 365 (2018)

    Article  Google Scholar 

  • Tonucci, R., Justus, B., Campillo, A., Ford, C.: Nanochannel array glass. Science 258, 783–785 (1992)

    Article  ADS  Google Scholar 

  • Tsaousidou, M.: Enhanced phonon-drag thermopower of ballistic semiconducting single-walled carbon nanotubes near the second subband edge. Phys. Status Solidi B 2019, 1800757 (2019)

    Article  Google Scholar 

  • Tsen, K., Ferry, D., Salvador, A., Morkoc, H.: Picosecond raman studies of the electron-phonon interactions in \(al_{x}ga_{1-x}as\) : Nonmonotonic dependence upon the alloy composition. Phys. Rev. Lett. 80, 4807–4810 (1998)

    Article  ADS  Google Scholar 

  • Zhu, L., Li, W., Ding, F.: Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering. Nanoscale 11, 4248–4257 (2019)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moletlanyi Tshipa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masale, M., Tshipa, M. Electron-LO-phonon intrasubband scattering rates in a hollow cylinder under the influence of a uniform axial applied magnetic field. Opt Quant Electron 53, 691 (2021). https://doi.org/10.1007/s11082-021-03208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03208-z

Keywords

Navigation