Skip to main content
Log in

Computational analysis of chalcogenides as an inorganic hole transport layer in perovskite solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Fill factor (FF) deficit and stability is a primary concern and challenge with the perovskite solar cell. The band alignment and resistance at the junction interface further decreases the fill factor and thus limits the performance of the device. Moreover, degradation of the intrinsic properties of the upcoming perovskite material such as methylammonium lead halide on exposure to ambience or moisture creates instability and decreases the shelf life of the device. To overcome all these challenges, we have engineered the device structure and introduces an earth-abundant material in the primitive perovskite structure by introducing an inorganic hole transport layer (HTL). It was observed from the calculation that the FF is sensitive to the band offset values. Moreover, the band alignment/band offset role and effect at the Perovskite/HTL junction were investigated. It is evident from the calculation that the inorganic material replacing Spiro-MeOTAD can enhance the stability of the device by providing insulation from ambient. The efficiency of SnS and spiro-MeOTAD were found to be comparable in the present work and thus the shelf life and moisture sensitivity challenge of the perovskite solar cell is addressed. Moreover, this work paves the way for earth-abundant p-type chalcogenides tin selenide (SnS) as a HTL layer in the perovskite solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altermatt, P.P., Kiesewetter, T., Ellmer, K., Tributsch, H.: Specifying targets of future research in photovoltaic devices containing pyrite ðFeS2 Þ by numerical modeling. Solar Energy Mater. Solar Cells 71, 181–195 (2002)

    Article  Google Scholar 

  • Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000)

    Article  Google Scholar 

  • Burton, A., Colombara, D., Abellon, R.D., Grozema, F.C., Peter, L.M., Savenije, T.J., Dennler, G., Walsh, A.: Synthesis, characterization, and electronic structure of single crystal SnS, Sn2S3, and SnS2 L. Chem. Mater. 25, 4908–4916 (2013)

    Article  Google Scholar 

  • Casas, G.A., Cappelletti, M.A., Cedola, A.P., Soucase, B.M., y Blanca, E.L.P.: Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations. Superlattices Microstruct. 107, 136–143 (2017)

    Article  ADS  Google Scholar 

  • De Angelis, A.D., Christian Kemp, K., Gaillard, N., Kim, K.S.: Antimony (III) sulfide thin films as a photoanode material in photocatalytic water splitting. ACS Appl. Mater. Interfaces 8, 8445–8451 (2016)

    Article  Google Scholar 

  • Dhingra, P., Singh, P., Rana, P.J.S., Garg, A., Kar, P.: Hole-transporting materials for perovskite-sensitized solar cells. Energy Technol. 4, 891–938 (2016)

    Article  Google Scholar 

  • Gokmen, T., Gunawan, O., Mitzi, D.B.: Minority carrier diffusion length extraction in Cu2ZnSn(Se, S)4 solar cells. J Appl Phys 114, 114511 (2013)

    Article  ADS  Google Scholar 

  • Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3–13 (2017)

    Article  Google Scholar 

  • Hossain, M.I., Alharbi, F.H., Tabet, N.: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 120, 370–380 (2015)

    Article  ADS  Google Scholar 

  • Hwang, I., Jeong, I., Lee, J., Ko, M.J., Yong, K.: Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 7, 17330–17336 (2015)

    Article  Google Scholar 

  • Kumar, A.: Efficiency enhancement of CZTS solar cells using structural engineering. Superlattices Microstruct. 153, 106872 (2021a)

    Article  Google Scholar 

  • Kumar, A.: Numerical modelling of ion-migration caused hysteresis in perovskite solar cells. Opt. Quant. Electron. 53, 1–9 (2021b)

    Article  Google Scholar 

  • Kumar, A., Ranjan, P.: Impact of light soaking on absorber and buffer layer in thin film solar cells. Appl. Phys. A 126, 1–8 (2020)

    Article  Google Scholar 

  • Kumar, A., Ranjan, P.: Defects signature in VOC characterization of thin-film solar cells. Sol. Energy 220, 35–42 (2021)

    Article  ADS  Google Scholar 

  • Kumar, A.: Impact of selenium composition variation in CZTS solar cell. Optik 234, 166421 (2021)

    Article  ADS  Google Scholar 

  • Lim, Y., Ok, Y.W., Tark, S.J., Kang, Y., Kim, D.: Electrical contact properties of Cu2S nanowires grown vertically on Cu foil by gas–solid reaction. Curr. Appl. Physi. 9, 890–893 (2009)

    Article  ADS  Google Scholar 

  • Lv, M., Zhu, J., Huang, Y., Li, Y., Shao, Z., Xu, Y., Dai, S.: Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells. ACS Appl. Mater. Interfaces 7, 17482–17488 (2015)

    Article  Google Scholar 

  • Mattheis, J., Werner, J.H., Rau, U.: Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. Phys Rev B 77, 085203 (2008)

    Article  ADS  Google Scholar 

  • Minemoto, T., Murata, M.: Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr. Appl. Phys. 14, 1428–1433 (2014)

    Article  ADS  Google Scholar 

  • Minemoto, T., Murata, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015)

    Article  Google Scholar 

  • Mitzi, D.B., Gunawan, O., Todorov, T.K., Barkhouse, D.A.R.: Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology. Philos. Trans. r. Soc. A 371, 20110432 (2013)

    Article  ADS  Google Scholar 

  • Popov, P.A., Fedorov, P.P., Kuznetsov, S.V.: Thermal conductivity of FeS2 pyrite crystals in the temperature range 50–300 K. Crystallogr. Rep. 58, 319–321 (2013)

    Article  ADS  Google Scholar 

  • Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., Nazeeruddin, M.K., Gratzel, M.: Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 1–6 (2014)

    Google Scholar 

  • Rached, D., Mostefaoui, R.: Influence of the front contact barrier height on the Indium Tin Oxide/hydrogenated p-doped amorphous silicon heterojunction solar cells. Thin Solid Films 516, 5087–5092 (2008)

    Article  ADS  Google Scholar 

  • Rau, U., Schock, H.W.: Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Appl. Phys. A 69, 131–147 (1999)

    Article  ADS  Google Scholar 

  • Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt: Res. Appl. 21, 72–76 (2013)

    Article  Google Scholar 

  • Skelton, J.M., Jackson, A.J., Dimitrievska, M., Wallace, S.K., Walsh, A.: Vibrational spectra and lattice thermal conductivity of kesterite-structured Cu2ZnSnS4 and Cu2ZnSnSe4. APL Mater. 3(4), 041102 (2015)

    Article  ADS  Google Scholar 

  • Tang, Y.Q., Ge, Z.G., Feng, J.: Synthesis and thermoelectric properties of copper sulfides via solution phase methods and spark plasma sintering. Crystals. 7(5), 141 (2017)

    Article  Google Scholar 

  • Wang, D., Wright, M., Elumalai, N.K., Uddin, A.: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016)

    Article  Google Scholar 

  • Wei, L., Chen, J., He, Q., Teng, W.: Study of lattice thermal conductivity of PbS. J. Alloys Compd. 584, 381–384 (2014)

    Article  Google Scholar 

  • Wu, Q., Xue, C., Li, Y., Zhou, P., Liu, W., Zhu, J., Dai, S., Zhu, C., Yang, S.: Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 7, 28466–28473 (2015)

    Article  Google Scholar 

  • Xu, L., Deng, L., Cao, J., Wang, X., Chen, W., Jiang, Z.: Solution-processed Cu(In, Ga)(S, Se)2, nanocrystal as inorganic hole-transporting material for efficient and stable perovskite solar cells. Nanoscale Res. Lett. 12, 1–8 (2017)

    Article  ADS  Google Scholar 

  • Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.I.: High performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Article  ADS  Google Scholar 

  • Yeon, D.H., Mohanty, B.C., Lee, S.M., Cho, Y.S.: Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells. Sci. Rep. 5, 1–7 (2015)

    Google Scholar 

  • You, J., Meng, L., Song, T., Guo, T., Yang, Y.M., Chang, W., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., Marco, N.D., Yang, Y.: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–51 (2016)

    Article  ADS  Google Scholar 

  • Yu, W., Li, F., Wang, H., Alarousu, E., Chen, Y., Lin, B., Wang, L., Hedhili, M.N., Li, Y., Wu, K., Wang, X., Mohammed, O.F., Wu, T.: Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 8, 6173–6179 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledgment Dr Marc Burgelman, Honorary Professor, University of Gent for providing SCAPS-1D software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Ethics declarations

Conflict of interest

Authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ranjan, P. Computational analysis of chalcogenides as an inorganic hole transport layer in perovskite solar cells. Opt Quant Electron 53, 511 (2021). https://doi.org/10.1007/s11082-021-03186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03186-2

Keywords

Navigation