Skip to main content
Log in

Predictive feedback polarized dispersion control for PCF

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Photonic crystal fibers, also known as microstructured or holey fibers generated great interest in the scientific community. Today, Index Guided photonic crystal fibers (PCFs) are established as an alternative fiber technology. Index Guided PCF addicted to challenges that reduce its durability and sensitivity of numerous PCF sensors according to their application field. Challenges may be in terms of polarization dispersion which arises due to Random imperfections that break the circular symmetry in PCF. To cope up with the above challenges, this work has proposed a Predictive Feedback Polarized Dispersion Control Model. Our model process with predictive feedback optimized error solution using Nonlinear Model Predictive Controller along with Gradient Search Algorithm, which controls the polarization dispersion based on the Sequential Approach. A sequential approach is used here, to detect and separate the overlapped waves. Also, the Finite Element Analysis method has been accomplished to perform numerical analysis. Thus our model enhances the system performance in terms of Dispersion, Refractive Index, Confinement Loss, and Sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelaal, S.M., Younis, B.M., Obayya, S.S.A., Hameed, M.F.O.: Highly negative dispersion dual-core liquid crystal photonic crystal fiber. Opt. Fiber Technol. 60, 102330 (2020)

    Article  Google Scholar 

  • Ahmed, K., Paul, B.K., Jabin, M.A., Biswas, B.: FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber. Ceram. Int. 45(12), 15343–15347 (2019)

    Article  Google Scholar 

  • Arif, M.F.H., Biddut, M.J.H.: Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Optik Int. J. Light Electron Opt. (2016). https://doi.org/10.1016/j.ijleo.2016.11.203

    Article  Google Scholar 

  • Biswas, B., Ahmed, K., Paul, B.K., Khalek, M.A., Uddin, M.S.: Numerical evaluation of the performance of different materials in nonlinear optical applications. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102184

    Article  Google Scholar 

  • Chauhan, P., Kumar, A., Kalra, Y.: A dispersion engineered silica-based photonic crystal fiber for supercontinuum generation in near-infrared wavelength region. Optik 187, 230–237 (2019)

    Article  ADS  Google Scholar 

  • Ellis, A.D., McCarthy, M.E., Al Khateeb, M.A.Z., Sorokina, M., Doran, N.J.: Performance limits in optical communications due to fiber nonlinearity. Adv. Opt. Photon. 9, 429–503 (2017)

    Article  Google Scholar 

  • Gangwar, R.K., Singh, V.K.: Highly sensitive surface plasmon resonance-based D-shaped photonic crystal fiber refractive index sensor. Plasmonics 12(5), 1367–1372 (2017)

    Article  Google Scholar 

  • Hoo, Y.L., Jin, W., Shi, C., Ho, H.L., Wang, D.N., Ruan, S.C.: Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 42(18), 3509–3515 (2003)

    Article  ADS  Google Scholar 

  • Islam, M.I., Ahmed, K., Paul, B.K., Chowdhury, S., Sen, S., Islam, M.S., Asaduzzaman, S., Bahar, A.N.: Ultra-high negative dispersion and nonlinearity based single mode photonic crystal fiber: design and analysis. J. Opt. 48(1), 18–25 (2019)

    Article  Google Scholar 

  • Liao, J., Sun, J., Du, M., Qin, Y.: Highly nonlinear dispersion-flattened slotted spiral photonic crystal fibers. IEEE Photon. Technol. Lett. 26, 380–383 (2014)

    Article  ADS  Google Scholar 

  • Limodehi, H.E., Legare, F.: Fiber optic humidity sensor using water vapor condensation. Opt. Express 25, 15313–15321 (2017)

    Article  ADS  Google Scholar 

  • Lu, D., Li, X., Zeng, G., Liu, J.: Dispersion engineering in single-polarization singlemode photonic crystal fibers for a nearly zero flattened profile. IEEE Photon. J. 9, 1–8 (2017)

    Google Scholar 

  • Marquezcruz, V., Albert, J.: High resolution NIR TFBG-assisted biochemical sensors. J. Lightwave Technol. 33(16), 3363–3373 (2015)

    Article  ADS  Google Scholar 

  • Monfared, Y.E., Mojtahedinia, A.: Highly birefringent photonic crystal fiber with negative dispersion for broadband dispersion compensation. Optik Int. J. Light Electron Opt. 125, 5969–5972 (2014)

    Article  Google Scholar 

  • Monfared, Y.E., Ponomarenko, S.A.: Slow light generation in liquid-filled photonic crystal fibers via stimulated Brillouin scattering. Optik Int. J. Light Electron Opt. 127, 5800–5805 (2016)

    Article  Google Scholar 

  • Monfared, Y.E., Ponomarenko, S.A.: Extremely nonlinear carbon-disulfide-filled photonic crystal fiber with controllable dispersion. Opt. Mater. 88, 406–411 (2019)

    Article  ADS  Google Scholar 

  • Monfared, Y.E., Mojtahedinia, A., MalekiJavan, A.R., MonajatiKashani, A.R.: Highly nonlinear enhanced core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing. Front. Opto Electron. 6, 297–302 (2013)

    Article  Google Scholar 

  • Morshed, M., Arif, M.F.H., Asaduzzaman, S. and Ahmed, K.: Design and characterization of photonic crystalfiber for sensing applications. Eur. Sci. J. 11(12), (2015)

  • Paul, B.K., Ahmed, F., Moctader, M.G., Ahmed, K., Vigneswaran, D.: Silicon nano crystal filled photonic crystal fiber for high nonlinearity. Opt. Mater. 84, 545–549 (2018a)

    Article  ADS  Google Scholar 

  • Paul, B.K., Khalek, M.A., Chakma, S., Ahmed, K.: Chalcogenide embedded quasi photonic crystal fiber for nonlinear optical applications. Ceram. Int. 44(15), 18955–18959 (2018b)

    Article  Google Scholar 

  • Paul, B.K., MdKhalek, A., Chakma, S., Ahmed, K.: Chalcogenide embedded quasi photonic crystal fiber for nonlinear optical applications. Ceram. Int. 44, 18955–18959 (2018c)

    Article  Google Scholar 

  • Paul, B.K., MdMoctaderd, G., Ahmed, K., MdKhalek, A.: Nanoscale GaP strips based photonic crystal fiber with high nonlinearity and high numerical aperture for laser applications. Results Phys. 10, 374–378 (2018d)

    Article  ADS  Google Scholar 

  • Qian, W., Zhao, C.L., He, S., Dong, X., Zhang, S., Zhang, Z., Jin, S., Guo, J., Wei, H.: High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Lett. 9, 1548–1550 (2011)

    Article  ADS  Google Scholar 

  • Reeves, W.H., Knight, J.C., Russell, P.S.J., Roberts, P.J.: Demonstration ofultra-flattened dispersion in photonic crystal fibers. Opt. Express 10(14), 609–613 (2002)

    Article  ADS  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Shee, Y.G., Ahmed, R., Chow, D.M., Adikan, F.M.: Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015a)

    Article  ADS  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Chow, D.M., Yu, G.S., Ahmed, R., Adikan, F.R.M.: Photonic crystal fiberbased surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015b)

    Article  ADS  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Chow, D.M., Shee, Y.G., Ahmed, R., Adikan, F.R.M.: Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015c)

    Article  ADS  Google Scholar 

  • Russell, P.: Photonic crystal fibers. Science 299(5605), 358–362 (2003)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11(8), 843–852 (2003)

    Article  ADS  Google Scholar 

  • Urbanczyk, W., Martynkien, T., Szpulak, M., Statkiewicz, G., Anuszkiewicz, A., Olszewski, J., Golojuch, G. et al.: Photonic crystal fibers for sensing applications. In 2008 IEEE/LEOS Winter Topical Meeting Series 196–197 (2008)

  • Wang, X., Li, S., Liu, Q., Wang, G., Zhao, Y.: Design of a single-polarization singlemode photonic crystal fiber filter based on surface plasmon resonance. Plasmonics (2016). https://doi.org/10.1007/s11468-016-0390-3

    Article  Google Scholar 

  • Yang, X., Lu, Y., Liu, B., Xu, D., Yao, J.: Design of a tunable single-polarization photonic crystal fiber filter with silver-coated and liquid-filled air holes. IEEE Photonics J. 9(4), 1–8 (2017)

    Google Scholar 

  • Zhang, Y., Xue, L., Qiao, D., Guang, Z.: Porous photonic-crystal fiber with near-zero ultra-flattened dispersion and high birefringence for polarization-maintaining terahertz transmission. Optik 207, 163817 (2020)

    Article  ADS  Google Scholar 

  • Zou, X., Bai, W., Chen, W., Li, P., Lu, B., Yu, G., Pan, W., Luo, B., Yan, L., Shao, L.: Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing. J. Lightw. Technol. 36(19), 4337–4346 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Alwin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwin, T. Predictive feedback polarized dispersion control for PCF. Opt Quant Electron 53, 535 (2021). https://doi.org/10.1007/s11082-021-03107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03107-3

Keywords

Navigation