Skip to main content
Log in

Tunable triple Fano resonance in MIM waveguide system with split ring resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A plasmonic refractive index nanosensor based on Fano resonance was designed, the excellent performance of the structure was numerically achieved. The system consists of a metal–insulator-metal (MIM) waveguide with two silver baffles and a coupled split ring resonator (SRR), and the finite-difference time-domain (FDTD) method was utilized to study the transmission characteristics of the structure. The results show that the designed structure can excite the triple Fano resonance phenomenon. For a positive SRR structure, the transmission peak can be tuned vertically and horizontally by adjusting the structural parameters. Furthermore, the sensitivity of nanosensors can reach 1034 nm/RIU, and the maximum figure of merit (FOM) is 7.01 × 104. Interestingly, the improved symmetrical SRR structure demonstrated that the sensitivity is as high as 1053 nm/RIU, and the maximum FOM value was 1.82 × 105. High performance and good controllability can provide a new possibility for the design and optimization of nanosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Chen, Z., Wang, W.H., Cui, L.N., Yu, L., Duan, G.Y., Zhao, Y.F., Xiao, J.H.: Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 10, 721–727 (2014)

    Article  Google Scholar 

  • Chen, Z., Yu, L., Wang, L.L., Duan, G.Y., Zhao, Y.F., Xiao, J.H.: A refractive index nanosensor based on fano resonance in the plasmonic waveguide system. IEEE Photon. Technol. Lett. 27, 1695–1698 (2015a)

    Article  ADS  Google Scholar 

  • Chen, Z., Cui, L.N., Song, X.K., Yu, L., Xiao, J.H.: High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt. Commun. 340, 1–4 (2015b)

    Article  ADS  Google Scholar 

  • Chen, Z., Cao, X.Y., Song, X.K., Wang, L.L., Yu, L.: Side-coupled cavity-induced fano resonance and its application in nanosensor. Plasmonics 11, 307–313 (2015c)

    Article  Google Scholar 

  • Fang, Y.R., Sun, M.T.: Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, 1–11 (2015)

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

  • Li, H., Jiao, R.Z.: Plasmonic band-stop filters based on tooth structure. Opt. Commun. 439, 201–205 (2019)

    Article  ADS  Google Scholar 

  • Li, X., Zhang, Z., Guo, F.Q., Huang, Y.N., Zhang, B.H., Zhang, L.L., Yang, Q., Tan, Y., Liu, X.B., Bai, H.N., Song, Y.H.: Tunable plasmonically induced reflection in HRR-coupled MIM waveguide structure. Optik 199, 1–6 (2019)

  • Limonov, M.F., Rybin, M.V., Poddubny, A.N., Kivshar, Y.S.: Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017)

    Article  Google Scholar 

  • Lu, H., Liu, X.M., Mao, D., Wang, G.X.: Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt. Lett. 37, 3780–3782 (2012)

    Article  ADS  Google Scholar 

  • Lukyanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  ADS  Google Scholar 

  • Ma, F.S., Lee, C.K.: Optical nanofilters based on meta-atom side-coupled plasmonics metal-insulator-metal waveguides. J. Lightwave Technol. 31, 2876–2880 (2013)

    Article  ADS  Google Scholar 

  • Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  • Pang, S.F., Huo, Y.P., Xie, Y., Hao, L.M.: Tunable electromagnetically induced transparency-like in plasmonic stub waveguide with cross resonator. Plasmonics 12, 1161–1168 (2017)

    Article  Google Scholar 

  • Qiao, L.T., Zhang, G.M., Wang, Z.S., Fan, G.P., Yan, Y.F.: Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J. Mod. Opt. 63, 1078–1086 (2016)

    Article  ADS  Google Scholar 

  • Ren, X.B., Ren, K., Cai, Y.X.: Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl. Opt. 56, H1–H9 (2017)

  • Tang, Y., Zhang, Z.D., Wang, R.B., Hai, Z.Y., Xue, C.Y., Zhang, W.D., Yan, S.B.: Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17, 1–8 (2017)

  • Ur Rahman, M.Z., Krishna, K.M., Reddy, K.K., Babu, M.V., Mirza, S.S., Fathima, Y.S.: Ultra-wide-band band-pass filters using plasmonic MIM waveguide-based ring resonators. IEEE Photon Technol. Lett. 30, 1715–1718 (2018)

    Article  ADS  Google Scholar 

  • Wang, S.W., Li, Y., Xu, Q.J., Li, S.H.: A MIM filter based on a side-coupled crossbeam square-ring resonator. Plasmonics 11, 1291–1296 (2016)

    Article  Google Scholar 

  • Wei, G.Q., Tian, J.P., Yang, R.C.: Fano resonance in MDM plasmonic waveguides coupled with split ring resonator. Optik 193, 1–11 (2019)

  • Wen, K.H., Yan, L.S., Pan, W., Luo, B., Guo, Z., Guo, Y.H., Luo, X.G.: Electromagnetically induced transparency-like transmission in a compact side-coupled T-shaped resonator. J. Lightwave Technol. 32, 1701–1707 (2014a)

    Article  ADS  Google Scholar 

  • Wen, K.H., Yan, L.S., Hu, Y.H., Chen, L., Lei, L.: A plasmonic wavelength-selected intersection structure. Plasmonics 9, 685–690 (2014b)

    Article  Google Scholar 

  • Wen, K.H., Hu, Y.H., Chen, L., Zhou, J.Y., Lei, L., Guo, Z.: Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10, 27–32 (2014c)

    Article  Google Scholar 

  • Xie, Y.Y., Huang, Y.X., Zhao, W.L., Xu, W.H.: A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J. 7, 1–12 (2015)

    Google Scholar 

  • Yan, S.B., Zhang, M., Zhao, X.F., Zhang, Y.J., Wang, J.C., Wen, J.: Refractive index sensor based on metal-insulator-metal waveguide coupled with a symmetric structure. Sensors 17, 1–8 (2017)

  • Yun, B.F., Zhang, R.H., Hu, G.H., Cui, Y.P.: Ultra sharp fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 11, 1157–1162 (2016a)

    Article  Google Scholar 

  • Yun, B.F., Hu, G.H., Zhang, R.H., Cui, Y.P.: Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J. Opt. 18, 1–8 (2016b)

  • Zand, I., Abrishamian, M.S., Pakizeh, T.: Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing. IEEE J. Sel. Top. Quantum Electron. 19, 1–5 (2013)

  • Zhang, Z., Shi, F.H., Chen, Y.H.: Tunable multichannel plasmonic filter based on coupling-induced mode splitting. Plasmonics 10, 139–144 (2015)

    Article  Google Scholar 

  • Zhang, B.H., Guo, F.Q., Wang, J.J., Bai, H.N., Guo, R.Q., Zhang, L.L., Huang, Y.N.: Plasmonically induced reflection in MIM plasmonic waveguide resonator system. Optik 171, 161–166 (2018)

    Article  ADS  Google Scholar 

  • Zhao, X.F., Zhang, Z.D., Yan, S.B.: Tunable fano resonance in asymmetric MIM waveguide structure. Sensors 17, 1–8 (2017)

Download references

Acknowledgements

This work was supported by the National Laboratory of Solid State Microstructures, Nanjing University (Grant Numbers M32060), Scientific Research Program of the Higher Education Institution of Xinjiang (Grant Numbers XJEDU2020Y038), Natural Science Foundation Project of Xinjiang Uygur Autonomous Region (Grant Numbers 2019D01C001, 2019D01C002).

Author information

Authors and Affiliations

Authors

Contributions

ZB: Conceptualization, Project administration, Funding acquisition. BH: Visualization, Investigation. GF: Resources, Supervision. LX: Software, Formal analysis, Writing-Original draft preparation. YQ: Data curation, Validation, Writing-Reviewing and Editing. PK: Validation. LX: Methodology. TY: Validation. ZZ: Software.

Corresponding authors

Correspondence to Baohua Zhang, Haineng Bai or Fuqiang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, Q., Peng, K. et al. Tunable triple Fano resonance in MIM waveguide system with split ring resonator. Opt Quant Electron 53, 447 (2021). https://doi.org/10.1007/s11082-021-02994-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02994-w

Keywords

Navigation