Skip to main content

Advertisement

Log in

Graphene/porous silicon reconfigurable transmission filter operating at 1.55 and 1.53 µm

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The present work is a numerical study of the transmission properties of a multilayer structure operating at the telecom wavelengths 1.55 and 1.53 μm. The transmission peak is obtained by the periodic alternation of two layers of porous silicon (PS) of different porosities (85 and 75%), separated by a graphene layer. The modification of the graphene Fermi energy (EF) allows the adjustment of the transmission peak wavelength. Fixing Fermi energy to EF = 0.47 eV and EF = 1.525 eV allows to set the working wavelength to 1.55 and 1.53 μm, respectively. Under the variation of the temperature and of the degree of oxidation of the PS, the transmission properties of the structure are altered. We shows that the adjustment of EF makes it possible to correct the shifts in the working frequency induced by these two parameters. The simulation results show that the variation of EF can compensate the variation of the temperature on the interval 293–73 K as well as the variation of the oxidation of the PS up to 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajlani, H., Azizi, M.K., Gharsallah, A., Oueslati, M.: Graphene-GaAs-Graphene stacked layers for the improvement of the transmission at the wavelength of 1.55μm. Opt. Mater. 57, 120–124 (2016)

    Article  ADS  Google Scholar 

  • Ajlani, H., Azizi, M.K., Gharsallah, A., Meftah, A., Oueslati, M.: Graphene-based reconfigurable transmission filter near the wavelength of 1.55mm. Opt. Mater. 66, 201–206 (2017)

    Article  ADS  Google Scholar 

  • Astrova, E.V., Tolmachev, V.A.: Effective refractive index and composition of oxidized porous silicon films. Mater. Sci. Eng. B 70, 142–148 (2000)

    Article  Google Scholar 

  • Barla, K., Herino, R., Bomchil, G.: Stress in oxidised porous silicon layers. J. Appl. Phys. 59(2), 439–441 (1986)

    Article  ADS  Google Scholar 

  • Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  ADS  Google Scholar 

  • Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of grapheme. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  • Duris, M., Guendouz, M., Lorrain, N., Pirasteh, P., Bodiou, L., Raiah, W., Coffinier, Y., Thomy, V., Charrier, J.: Vertical multilayer structures based on porous silicon layers for mid-infrared applications. Opt. Mater. Expr. 10(8), 1921–1930 (2020)

    Article  ADS  Google Scholar 

  • Falkovsky, L.A.: Optical properties of grapheme. J. Phys.: Conf. Ser. 129, 012004 (2008)

    Google Scholar 

  • Fang, T., Konar, A., Xing, H., Jena, D.: Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91, 0921092 (2007)

    Google Scholar 

  • Fattah, A., Bavir, M., Abbasi, A.: Ali Ashgar Orouji, Efficiency improvement of graphene/silicon Schottky junction solar cell using diffraction grating. Opt. Quant. Electron. 52(420), 1–18 (2020)

    Article  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  • Gelloz, B., Kojima, A., Koshida, N.: Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing. Appl. Phys. Lett. 87, 031107–01–031107–03 (2005)

    Article  Google Scholar 

  • Guo, P., Hou, W., Guo, L., Ning, Z., Obaidat, M.S., Liu W.: "WDM-MDM Silicon-Based Optical Switching for Data Center Networks," ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019, 1–6.

  • Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme. J. Appl. Phys. 103, 064302–1–064302–8 (2008)

    Article  Google Scholar 

  • Jia, H., Li, X., Song, J., Zhang, X., Luo, L., He, Y., Li, B., Cai, Y., Hu, S., Xiao, X., Wang, C., Rosso, K.M., Yi, R., Patel, R., Zhang, J.-G.: Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 11(1474), 1–9 (2020)

    ADS  Google Scholar 

  • Kong, X., Zhang, L., Liu, B., Gao, H., Zhang, Y., Yan, H., Song, X.: Graphene/Si Schottky solar cells: a review of recent advances and prospects. RSC Adv. 9, 863–877 (2019)

    Article  ADS  Google Scholar 

  • Lewi, S.E., DeBoer, S.R., Golea, J.L., Hesketh, P.J.: Sensitive, selective, and analytical improvements to a porous silicon gas sensor. Sensors Actuat. B: Chem. 110(1), 54–65 (2005)

    Article  Google Scholar 

  • Li, Y.Y., Cunin, F., Link, J.R., Gao, T., Betts, R.E., Reiver, S.H., Chin, V., Bhatia, S.N., Sailor, M.J.: “Polymer replicas of photonic porous silicon for sensing and drug delivery application”s. Science 299(5615), 2045–2204 (2003)

    Article  ADS  Google Scholar 

  • Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Wu, D.: Graphene-on-Silicon Schottky junction solar cell. Adv. Mater. 22(25), 2743–2748 (2010)

    Article  Google Scholar 

  • Loni, A., Canham, L.T., Berger, M.G., Arens-Fischer, R., Munder, H., Luth, H., Arrand, H.F., Benson, T.M.: Porous silicon multilayer optical waveguides. Thin Solid Films 276(1–2), 143–146 (1996)

    Article  ADS  Google Scholar 

  • K. Mikitchuk, A. Chizh, and S. Malyshev, “Analog optical link operating at the gain peak wavelength of an erbium-doped fiber amplifier”, Proc. of 44th European Microwave Conference (EuMC), (2014) pp. 679–683.]

  • Najar, A., Charrier, J., Ajlani, H., Lorrain, N., Haesaert, S., Oueslati, M., Hajji, L.: Optical gain at 1.53 mm in Er3+-Yb3+ co-doped porous silicon waveguides. Mater. Sci. Eng.: B 146(1–3), 260–263 (2008)

    Article  Google Scholar 

  • Ookubo, N., Ono, H., Ochiai, Y., Mochizuki, Y., Matsui, S.: Effects of thermal annealing on porous silicon photoluminescence dynamics. Appl. Phys. Lett. 61, 940–942 (1992)

    Article  ADS  Google Scholar 

  • Palik, E.D.: Handbook of optical constants of solids. Academic press (1998)

    Google Scholar 

  • Pavesi, L.: Porous silicon dielectric multilayers and microcavities. Riv. Nuovo Cim. 20(1), 01–76 (1997)

    Article  Google Scholar 

  • Pirasteh, P., Charrier, J., Soltani, A., Haesaert, S., Haji, L., Godon, C., Errien, N.: The effect of oxidation on physical properties of porous silicon layers for optical applications. Appl. Surf. Sci. 253, 1999–2002 (2006)

    Article  ADS  Google Scholar 

  • Rahmeni, M., Ajlani, H., Moadhen, A., Zaibi, M.A., Haji, L., Oueslati, M.: Time-resolved photoluminescence study of stabilised iron-porous silicon nanocomposites. J. Alloy. Compd. 506, 496–499 (2010)

    Article  Google Scholar 

  • Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  • Snow, P.A., Squire, E.K., St, P., Russel, J.: Vapor sensing using the optical properties of porous silicon Bragg mirrors. J. Appl. Phys. 86, 1781–1784 (1999)

    Article  ADS  Google Scholar 

  • Sohn, H.: Refractive index of porous silicon, Handbook of porous silicon, pp. 231–243. Springer international publishing (2014)

    Google Scholar 

  • Theiss, W.: Optical properties of porous silicon. Surf. Sci. Reports 29(3–4), 91–192 (1997)

  • Xu, D.-X., Delâge, A., Verly, P., Janz, S., Wang, S., Vachon, M., Ma, P., Lapointe, J., Mmelati, D., Cheben, P., Schmid, J.H.: Empirical model for the temperature dependence of silicon refractive index from O to C band based on waveguide measurements. Opt. Expr. 27(19), 27229–27242 (2019)

    Article  Google Scholar 

  • Zhan, T., Shi, X., Dai, Y., Liu, X., Zi, J.: Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter 25(215301), 1–10 (2013)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Taif University for funding this work through Taif University Research Supporting, Project number (TURSP-2020/228), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosni Ajlani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajlani, H., Alotaibi, A.A., Alotaibi, S. et al. Graphene/porous silicon reconfigurable transmission filter operating at 1.55 and 1.53 µm. Opt Quant Electron 53, 266 (2021). https://doi.org/10.1007/s11082-021-02895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02895-y

Keywords

Navigation